Skip to main content
Glama

Sentry MCP

Official
by getsentry
mcp-prompts.ts2.93 kB
/** * Direct MCP server communication for prompts functionality. * * Since the AI SDK's experimental MCP client doesn't support listPrompts(), * this module provides direct access to prompt definitions from the MCP server. */ import PROMPT_DEFINITIONS from "@sentry/mcp-server/promptDefinitions"; // HACK: We're importing prompt handlers directly because the AI SDK's experimental MCP client // doesn't support prompt execution yet. Once the AI SDK adds support for prompts, we should // use mcpClient.executePrompt() or similar instead of directly importing these. import { PROMPT_HANDLERS } from "@sentry/mcp-server/prompts"; import type { ServerContext } from "@sentry/mcp-server/types"; import { logIssue } from "@sentry/mcp-server/telem/logging"; export interface PromptDefinition { name: string; description: string; // JSON Schema for parameters inputSchema: unknown; } /** * Get all available prompts from the MCP server. * * This is a direct implementation since the AI SDK MCP client * doesn't support prompts yet. */ export function getMcpPrompts(): PromptDefinition[] { return PROMPT_DEFINITIONS.map((prompt) => ({ name: prompt.name, description: prompt.description, inputSchema: prompt.inputSchema, })); } /** * Transform prompts into a format suitable for client consumption. * Converts Zod schemas to JSON schemas for easier client-side handling. */ export function serializePromptsForClient(prompts: PromptDefinition[]) { return prompts.map((prompt) => { const schema = prompt.inputSchema as | { properties?: Record< string, { type?: string | string[]; description?: string } | undefined >; required?: string[]; } | undefined; const parameters: Record<string, any> = {}; if (schema?.properties) { const req = new Set(schema.required ?? []); for (const [key, prop] of Object.entries(schema.properties)) { parameters[key] = { type: (prop?.type ?? "string") as string | string[], required: req.has(key), description: prop?.description, }; } } return { name: prompt.name, description: prompt.description, parameters, }; }); } /** * Execute a prompt handler to get the filled template. * This generates the instruction text that guides the LLM. */ export async function executePromptHandler( promptName: string, parameters: Record<string, any>, context: ServerContext, ): Promise<string | null> { const handler = PROMPT_HANDLERS[promptName as keyof typeof PROMPT_HANDLERS]; if (!handler) { return null; } try { return await handler(context, parameters as any); } catch (error) { logIssue(error, { loggerScope: ["cloudflare", "mcp-prompts"], contexts: { prompt: { name: promptName, }, }, }); return null; } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/getsentry/sentry-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server