Qdrant Retrieve MCP Server

Qdrant Retrieve MCP Server

MCP server for semantic search with Qdrant vector database.

Features

  • Semantic search across multiple collections
  • Multi-query support
  • Configurable result count
  • Collection source tracking

Note: The server connects to a Qdrant instance specified by URL.

Note 2: The first retrieve might be slower, as the MCP server downloads the required embedding model.

API

Tools

  • qdrant_retrieve
    • Retrieves semantically similar documents from multiple Qdrant vector store collections based on multiple queries
    • Inputs:
      • collectionNames (string[]): Names of the Qdrant collections to search across
      • topK (number): Number of top similar documents to retrieve (default: 3)
      • query (string[]): Array of query texts to search for
    • Returns:
      • results: Array of retrieved documents with:
        • query: The query that produced this result
        • collectionName: Collection name that this result came from
        • text: Document text content
        • score: Similarity score between 0 and 1

Usage with Claude Desktop

Add this to your claude_desktop_config.json:

{ "mcpServers": { "qdrant": { "command": "npx", "args": ["-y", "@gergelyszerovay/mcp-server-qdrant-retrive"], "env": { "QDRANT_API_KEY": "your_api_key_here" } } } }

Command Line Options

MCP server for semantic search with Qdrant vector database. Options --enableHttpTransport Enable HTTP transport [default: false] --enableStdioTransport Enable stdio transport [default: true] --enableRestServer Enable REST API server [default: false] --mcpHttpPort=<port> Port for MCP HTTP server [default: 3001] --restHttpPort=<port> Port for REST HTTP server [default: 3002] --qdrantUrl=<url> URL for Qdrant vector database [default: http://localhost:6333] --embeddingModelType=<type> Type of embedding model to use [default: Xenova/all-MiniLM-L6-v2] --help Show this help message Environment Variables QDRANT_API_KEY API key for authenticated Qdrant instances (optional) Examples $ mcp-qdrant --enableHttpTransport $ mcp-qdrant --mcpHttpPort=3005 --restHttpPort=3006 $ mcp-qdrant --qdrantUrl=http://qdrant.example.com:6333 $ mcp-qdrant --embeddingModelType=Xenova/all-MiniLM-L6-v2
-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Enables semantic search across multiple Qdrant vector database collections, supporting multi-query capability and providing semantically relevant document retrieval with configurable result counts.

  1. Features
    1. API
      1. Tools
    2. Usage with Claude Desktop
      1. Command Line Options

        Related MCP Servers

        • -
          security
          F
          license
          -
          quality
          Enables LLMs to perform semantic search and document management using ChromaDB, supporting natural language queries with intuitive similarity metrics for retrieval augmented generation applications.
          Last updated -
          Python
          • Apple
        • -
          security
          A
          license
          -
          quality
          Provides RAG capabilities for semantic document search using Qdrant vector database and Ollama/OpenAI embeddings, allowing users to add, search, list, and delete documentation with metadata support.
          Last updated -
          5
          4
          TypeScript
          Apache 2.0
        • -
          security
          A
          license
          -
          quality
          A Model Context Protocol server that enables semantic search capabilities by providing tools to manage Qdrant vector database collections, process and embed documents using various embedding services, and perform semantic searches across vector embeddings.
          Last updated -
          89
          TypeScript
          MIT License
        • -
          security
          F
          license
          -
          quality
          This server enables semantic search capabilities using Qdrant vector database and OpenAI embeddings, allowing users to query collections, list available collections, and view collection information.
          Last updated -
          Python

        View all related MCP servers

        ID: arzqvryi7y