Skip to main content
Glama

Qdrant Retrieve MCP Server

QdrantRetrieveInputSchema.ts1.37 kB
import { z } from "zod"; /** * Input parameters for the Qdrant Retrieve MCP tool */ export type QdrantRetrieveInput = { /** Collection names in Qdrant to search across */ collectionNames: string[]; /** Number of similar documents to retrieve */ topK: number; /** Array of query texts to search for */ query: string[]; }; /** * Schema for validating Qdrant Retrieve tool input parameters */ export const QdrantRetrieveInputSchema = z.object({ collectionNames: z.array( z.string() .min(1, "Collection name cannot be empty") .max(100, "Collection name must be at most 100 characters") ) .min(1, "At least one collection name is required") .max(10, "Maximum of 10 collections allowed") .describe("Names of the Qdrant collections to search across"), topK: z.number() .int("Number of results must be an integer") .min(1, "At least 1 result is required") .max(100, "Maximum of 100 results allowed") .default(3) .describe("Number of top similar documents to retrieve"), query: z.array( z.string() .min(1, "Each query must not be empty") .max(1000, "Each query must be at most 1000 characters") .describe("Query text to search for") ) .min(1, "At least one query is required") .max(10, "Maximum of 10 queries allowed") .describe("Array of query texts to search for"), });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gergelyszerovay/mcp-server-qdrant-retrive'

If you have feedback or need assistance with the MCP directory API, please join our Discord server