Skip to main content
Glama

pyResToolbox MCP Server

gas_sg_from_composition

Calculate gas specific gravity using hydrocarbon molecular weight and non-hydrocarbon mole fractions when direct SG measurement is unavailable.

Instructions

Calculate gas specific gravity from composition.

COMPOSITIONAL GAS CHARACTERIZATION - Computes gas specific gravity from hydrocarbon molecular weight and non-hydrocarbon mole fractions. Uses molecular weight weighted average method. Essential when gas composition is known but SG measurement is unavailable or unreliable.

Parameters:

  • hc_mw (float, required): Hydrocarbon molecular weight in lb/lbmol. Valid: 10-200. Typical: 16-50. Example: 18.5 for typical natural gas.

  • co2 (float, optional, default=0.0): CO2 mole fraction (0-1). Typical: 0-0.20. Example: 0.05 for 5% CO2.

  • h2s (float, optional, default=0.0): H2S mole fraction (0-1). Typical: 0-0.05. Example: 0.02 for 2% H2S (sour gas).

  • n2 (float, optional, default=0.0): N2 mole fraction (0-1). Typical: 0-0.10. Example: 0.01 for 1% N2.

  • h2 (float, optional, default=0.0): H2 mole fraction (0-1). Typical: 0-0.01. Example: 0.0 (rare in natural gas).

Calculation Method: Weighted average based on molecular weights:

  • HC fraction: User-provided MW (hc_mw)

  • CO2: MW = 44.01 lb/lbmol

  • H2S: MW = 34.08 lb/lbmol

  • N2: MW = 28.01 lb/lbmol

  • H2: MW = 2.02 lb/lbmol

  • Air: MW = 28.97 lb/lbmol (reference for SG)

Formula: MW_avg = hc_fraction × hc_mw + co2 × 44.01 + h2s × 34.08 + n2 × 28.01 + h2 × 2.02 SG = MW_avg / 28.97

Typical Hydrocarbon MW:

  • Pure methane: 16.04

  • Dry gas (C1-C2): 16-18

  • Associated gas (C1-C4): 18-25

  • Wet gas (C1-C6): 25-35

  • Condensate gas: 35-50

Applications:

  • Compositional Simulation: Convert composition to SG for black oil models

  • Gas Plant Feed: Characterize feed gas from composition analysis

  • Sales Gas Specs: Calculate SG for pipeline specifications

  • Contaminated Gas: Analyze gas with high non-hydrocarbon content

  • Laboratory Data: Convert GC analysis to SG

Non-Hydrocarbon Effects:

  • CO2 increases SG (MW=44.01 > air MW=28.97)

  • H2S increases SG (MW=34.08 > air MW=28.97)

  • N2 slightly decreases SG (MW=28.01 ≈ air MW=28.97)

  • H2 significantly decreases SG (MW=2.02 << air MW=28.97)

Returns: Dictionary with:

  • gas_specific_gravity (float): Gas SG (dimensionless, air=1)

  • composition (dict): Detailed composition breakdown

    • hydrocarbon_fraction: Mole fraction of hydrocarbons

    • hydrocarbon_mw: Provided hydrocarbon MW

    • co2_fraction: CO2 mole fraction

    • h2s_fraction: H2S mole fraction

    • n2_fraction: N2 mole fraction

    • h2_fraction: H2 mole fraction

  • method (str): "Molecular weight weighted average"

  • units (str): "dimensionless (air=1)"

  • inputs (dict): Echo of input parameters

Common Mistakes:

  • Using weight fraction instead of mole fraction

  • Incorrect hydrocarbon MW (must be average MW of HC fraction)

  • Mole fractions don't sum to 1.0 (should sum to 1.0)

  • Using component MW instead of mixture MW for hydrocarbons

  • Not accounting for all non-hydrocarbon components

Example Usage:

{ "hc_mw": 18.5, "co2": 0.05, "h2s": 0.0, "n2": 0.01, "h2": 0.0 }

Result: SG ≈ 0.65-0.70 (typical natural gas with 5% CO2, 1% N2).

Note: Mole fractions must sum to 1.0. If only HC fraction is provided, ensure hc_fraction = 1.0 - (co2 + h2s + n2 + h2). Hydrocarbon MW should be the average MW of the hydrocarbon fraction, not individual component MW.

Input Schema

NameRequiredDescriptionDefault
requestYes

Input Schema (JSON Schema)

{ "properties": { "request": { "$ref": "#/$defs/GasSGFromCompositionRequest" } }, "required": [ "request" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gabrielserrao/pyrestoolbox-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server