Skip to main content
Glama

pyResToolbox MCP Server

beta_to_lorenz

Convert Dykstra-Parsons beta coefficient to Lorenz coefficient for reservoir heterogeneity analysis. Enables comparison of reservoirs using different metrics and converts literature data between measurement systems.

Instructions

Convert Dykstra-Parsons beta to Lorenz coefficient.

HETEROGENEITY CONVERSION - Converts beta parameter to Lorenz coefficient. Essential for converting literature data and comparing reservoirs using different heterogeneity metrics.

Parameters:

  • value (float, required): Dykstra-Parsons beta coefficient (0-1). Must be 0 ≤ β ≤ 1. Typical: 0.3-0.8. Example: 0.6 for moderate heterogeneity.

Dykstra-Parsons Beta (β):

  • Permeability variation coefficient (dimensionless, 0-1)

  • β = (k50 - k84.1) / k50

  • Based on log-normal permeability distribution

  • Requires permeability data (core, logs)

  • Common in literature and older studies

Lorenz Coefficient (L):

  • Ranges from 0 (homogeneous) to 1 (completely heterogeneous)

  • Based on cumulative flow capacity vs cumulative storage capacity

  • Directly measurable from production data

  • More intuitive for production analysis

Typical Ranges:

  • β < 0.5: Low heterogeneity (L ~ 0.2-0.3)

  • β = 0.5-0.7: Moderate (L ~ 0.3-0.5)

  • β > 0.7: High heterogeneity (L > 0.5)

Use Cases:

  • Literature Conversion: Convert published beta values to Lorenz

  • Reservoir Comparison: Compare reservoirs using different metrics

  • Simulation Input: Convert beta to Lorenz for simulation models

  • Reservoir Analog Studies: Use analog beta values with Lorenz-based tools

  • Historical Data: Convert old Dykstra-Parsons studies to modern metrics

Returns: Dictionary with:

  • lorenz_coefficient (float): Lorenz coefficient (0-1)

  • beta (float): Input beta coefficient

  • method (str): "Dykstra-Parsons to Lorenz conversion"

  • inputs (dict): Echo of input parameters

Common Mistakes:

  • Beta coefficient outside valid range (must be 0-1)

  • Confusing beta with other variation coefficients

  • Using beta from wrong distribution (must be log-normal)

  • Not understanding that conversion is approximate (depends on distribution)

Example Usage:

{ "value": 0.6 }

Result: L ≈ 0.4-0.5 (moderate heterogeneity).

Note: Conversion assumes log-normal permeability distribution. For non-log-normal distributions, conversion may be less accurate. Always validate against actual production data when possible.

Input Schema

NameRequiredDescriptionDefault
requestYes

Input Schema (JSON Schema)

{ "properties": { "request": { "$ref": "#/$defs/LorenzRequest" } }, "required": [ "request" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/gabrielserrao/pyrestoolbox-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server