Skip to main content
Glama

Fonoster MCP Server

Official
by fonoster
MIT License
118
7,325
  • Apple
  • Linux
createVad.ts3.94 kB
/** * Copyright (C) 2025 by Fonoster Inc (https://fonoster.com) * http://github.com/fonoster/fonoster * * This file is part of Fonoster * * Licensed under the MIT License (the "License"); * you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * https://opensource.org/licenses/MIT * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { join } from "path"; import { getLogger } from "@fonoster/logger"; import * as ort from "onnxruntime-node"; import { chunkToFloat32Array } from "./chunkToFloat32Array"; import { SileroVadModel } from "./SileroVadModel"; import { VadParams } from "./types"; import { ONNXRuntimeAPI } from "./types"; const logger = getLogger({ service: "autopilot", filePath: __filename }); const FULL_FRAME_SIZE = 1024; // 64ms @ 16kHz const BUFFER_SIZE = 512; // 32ms @ 16kHz async function createVad(params: VadParams) { const { pathToModel, activationThreshold, deactivationThreshold, debounceFrames } = params; const effectivePath = pathToModel || join(__dirname, "..", "..", "silero_vad_v5.onnx"); const ortAdapter: ONNXRuntimeAPI = { InferenceSession: { create: ort.InferenceSession.create.bind(ort.InferenceSession) }, Tensor: ort.Tensor as unknown as ONNXRuntimeAPI["Tensor"] }; const silero = await SileroVadModel.new(ortAdapter, effectivePath); let sampleBuffer: number[] = []; let isSpeechActive = false; let framesSinceStateChange = 0; // Reset internal state after a state change. const resetState = () => { isSpeechActive = false; framesSinceStateChange = 0; // Clear any pending audio samples to avoid using outdated values. sampleBuffer = []; silero.resetState(); logger.silly("State reset -- sampleBuffer cleared"); }; return async function process( chunk: Uint8Array, callback: (event: "SPEECH_START" | "SPEECH_END") => void ) { // Convert the incoming chunk to normalized Float32 samples (using chunkToFloat32Array) const float32Array = chunkToFloat32Array(chunk); sampleBuffer.push(...float32Array); // Wait until we've collected a full frame worth of samples. while (sampleBuffer.length >= FULL_FRAME_SIZE) { const fullFrame = sampleBuffer.slice(0, FULL_FRAME_SIZE); sampleBuffer = sampleBuffer.slice(FULL_FRAME_SIZE); // Use the last BUFFER_SIZE samples from the full frame. const frame = fullFrame.slice(fullFrame.length - BUFFER_SIZE); const result = await silero.process(new Float32Array(frame)); const rawScore = result.isSpeech; logger.silly("Frame processing", { rawScore, isSpeechActive, framesSinceStateChange, pendingSamples: sampleBuffer.length }); framesSinceStateChange++; if (isSpeechActive) { // If already in speech, check if the score has dropped below deactivationThreshold if ( rawScore < deactivationThreshold && framesSinceStateChange >= debounceFrames ) { callback("SPEECH_END"); resetState(); logger.silly("Speech end detected", { rawScore }); continue; } } else { // If currently not speaking, check if the score is above activationThreshold if ( rawScore > activationThreshold && framesSinceStateChange >= debounceFrames ) { isSpeechActive = true; framesSinceStateChange = 0; callback("SPEECH_START"); logger.silly("Speech start detected", { rawScore }); } } } }; } export { createVad, VadParams };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fonoster/fonoster'

If you have feedback or need assistance with the MCP directory API, please join our Discord server