Skip to main content
Glama

Fonoster MCP Server

Official
by fonoster
MIT License
118
7,325
  • Apple
  • Linux
SileroVadModel.ts2.95 kB
/** * Copyright (C) 2025 by Fonoster Inc (https://fonoster.com) * http://github.com/fonoster/fonoster * * This file is part of Fonoster * * Licensed under the MIT License (the "License"); * you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * https://opensource.org/licenses/MIT * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { readFileSync } from "fs"; import { ONNXRuntimeAPI, ONNXSession, ONNXTensor, SpeechProbabilities } from "./types"; const SAMPLE_RATE = 16000; function getNewState(ortInstance: ONNXRuntimeAPI) { return new ortInstance.Tensor( "float32", new Float32Array(2 * 1 * 128), // Use Float32Array for consistency [2, 1, 128] ); } class SileroVadModel { private _session: ONNXSession; private _state: ONNXTensor; private _sr: ONNXTensor; constructor( private readonly ort: ONNXRuntimeAPI, private readonly pathToModel: string ) {} static readonly new = async (ort: ONNXRuntimeAPI, pathToModel: string) => { const model = new SileroVadModel(ort, pathToModel); await model.init(); return model; }; async init() { const modelArrayBuffer = readFileSync(this.pathToModel).buffer; const sessionOption = { interOpNumThreads: 1, intraOpNumThreads: 1, enableCpuMemArena: false }; this._session = await this.ort.InferenceSession.create( modelArrayBuffer, sessionOption ); // Validate model inputs/outputs const requiredInputs = ["input", "state", "sr"]; for (const name of requiredInputs) { if (!this._session.inputNames.includes(name)) { throw new Error(`Model is missing expected input "${name}"`); } } if ( !this._session.outputNames.includes("output") || !this._session.outputNames.includes("stateN") ) { throw new Error("Model is missing expected outputs"); } // Use BigInt for sample rate tensor this._sr = new this.ort.Tensor("int64", [BigInt(SAMPLE_RATE)], []); this._state = getNewState(this.ort); } resetState = () => { this._state = getNewState(this.ort); }; async process(audioFrame: Float32Array): Promise<SpeechProbabilities> { const inputTensor = new this.ort.Tensor("float32", audioFrame, [ 1, audioFrame.length ]); const feeds = { input: inputTensor, state: this._state, sr: this._sr }; const out = await this._session.run(feeds); this._state = out.stateN; const [isSpeech] = out.output.data; const notSpeech = 1 - isSpeech; return { notSpeech, isSpeech }; } } export { SileroVadModel };

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fonoster/fonoster'

If you have feedback or need assistance with the MCP directory API, please join our Discord server