Skip to main content
Glama
README.md3.29 kB
# Ant Design MCP Server (Python) This Model Context Protocol (MCP) server fetches and structures Ant Design v4 (Chinese) component documentation into JSON so AI agents can perform analysis. ## Features - Fetch overview page and individual component pages. - Extract component metadata: name, description, examples. - Classify API tables automatically (props / events / methods / other). - Cache fetched HTML locally. - Export all components into a single JSON file. - MCP tools exposed over JSON-RPC stdio. ## Tools - list_components(force?) - get_component(name, force?) - search_components(query) - export_all(force?, filepath?) ## Environment Setup Choose one method: ### venv (built-in) ``` python -m venv .venv source .venv/bin/activate pip install -r src/antd_mcp/requirements.txt ``` ### pyenv + venv ``` brew install pyenv pyenv install 3.11.8 pyenv local 3.11.8 python -m venv .venv source .venv/bin/activate pip install -r src/antd_mcp/requirements.txt ``` ### Conda ``` conda create -n antd-mcp python=3.11 -y conda activate antd-mcp pip install -r src/antd_mcp/requirements.txt ``` ## Run Server ``` python -m antd_mcp # or python src/antd_mcp/server.py ``` ## JSON-RPC Examples ``` # List tools echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | python -m antd_mcp # List components echo '{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"list_components","arguments":{}}}' | python -m antd_mcp # Get one component echo '{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"get_component","arguments":{"name":"Button"}}}' | python -m antd_mcp # Search components echo '{"jsonrpc":"2.0","id":4,"method":"tools/call","params":{"name":"search_components","arguments":{"query":"form"}}}' | python -m antd_mcp # Export all component data echo '{"jsonrpc":"2.0","id":5,"method":"tools/call","params":{"name":"export_all","arguments":{}}}' | python -m antd_mcp ``` ## Export Output Default file: `src/antd_mcp/exports/antd_components_all.json` Structure: ``` { "generated_at": <timestamp>, "count": <number_of_components>, "components": [ { "name": "Button", "title": "Button 按钮", "intro": [...], "props": [...], "events": [...], "methods": [...], "other_tables": [...], "table_summary": {"props":1,"events":0,...}, "examples": [...], "source_url": "https://4x.ant.design/..." } ] } ``` ## TODO / Roadmap - More precise table classification rules (column semantics). - Parallel fetching & retry with backoff. - Version / language (en vs cn) selection. - CLI wrapper. - Optional rate limiting. ## License MIT (add if needed) ## 安装 (发布后) ```bash pip install antd-mcp-server ``` 安装后命令行入口: ```bash antd-mcp --once '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' ``` ## 本地构建与发布 ```bash # 构建 python -m build # 上传到 PyPI python -m twine upload dist/* ``` ## 供 AI 工具使用的 mcp.json 示例 ```jsonc { "version": 1, "servers": { "antd_mcp": { "command": "antd-mcp", "args": [], "timeoutSeconds": 60 } } } ``` ## 环境变量 - `ANTD_MCP_CACHE_DIR` 自定义缓存目录。 - `MCP_PRETTY` / `MCP_COLOR` 控制输出格式。 ## 版本 当前版本: 0.1.0 # antd-mcp

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fnlearner/antd-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server