Skip to main content
Glama

Ant Design MCP Server (Python)

This Model Context Protocol (MCP) server fetches and structures Ant Design v4 (Chinese) component documentation into JSON so AI agents can perform analysis.

Features

  • Fetch overview page and individual component pages.

  • Extract component metadata: name, description, examples.

  • Classify API tables automatically (props / events / methods / other).

  • Cache fetched HTML locally.

  • Export all components into a single JSON file.

  • MCP tools exposed over JSON-RPC stdio.

Tools

  • list_components(force?)

  • get_component(name, force?)

  • search_components(query)

  • export_all(force?, filepath?)

Environment Setup

Choose one method:

venv (built-in)

python -m venv .venv source .venv/bin/activate pip install -r src/antd_mcp/requirements.txt

pyenv + venv

brew install pyenv pyenv install 3.11.8 pyenv local 3.11.8 python -m venv .venv source .venv/bin/activate pip install -r src/antd_mcp/requirements.txt

Conda

conda create -n antd-mcp python=3.11 -y conda activate antd-mcp pip install -r src/antd_mcp/requirements.txt

Run Server

python -m antd_mcp # or python src/antd_mcp/server.py

JSON-RPC Examples

# List tools echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | python -m antd_mcp # List components echo '{"jsonrpc":"2.0","id":2,"method":"tools/call","params":{"name":"list_components","arguments":{}}}' | python -m antd_mcp # Get one component echo '{"jsonrpc":"2.0","id":3,"method":"tools/call","params":{"name":"get_component","arguments":{"name":"Button"}}}' | python -m antd_mcp # Search components echo '{"jsonrpc":"2.0","id":4,"method":"tools/call","params":{"name":"search_components","arguments":{"query":"form"}}}' | python -m antd_mcp # Export all component data echo '{"jsonrpc":"2.0","id":5,"method":"tools/call","params":{"name":"export_all","arguments":{}}}' | python -m antd_mcp

Export Output

Default file: src/antd_mcp/exports/antd_components_all.json Structure:

{ "generated_at": <timestamp>, "count": <number_of_components>, "components": [ { "name": "Button", "title": "Button 按钮", "intro": [...], "props": [...], "events": [...], "methods": [...], "other_tables": [...], "table_summary": {"props":1,"events":0,...}, "examples": [...], "source_url": "https://4x.ant.design/..." } ] }

TODO / Roadmap

  • More precise table classification rules (column semantics).

  • Parallel fetching & retry with backoff.

  • Version / language (en vs cn) selection.

  • CLI wrapper.

  • Optional rate limiting.

License

MIT (add if needed)

安装 (发布后)

pip install antd-mcp-server

安装后命令行入口:

antd-mcp --once '{"jsonrpc":"2.0","id":1,"method":"tools/list"}'

本地构建与发布

# 构建 python -m build # 上传到 PyPI python -m twine upload dist/*

供 AI 工具使用的 mcp.json 示例

{ "version": 1, "servers": { "antd_mcp": { "command": "antd-mcp", "args": [], "timeoutSeconds": 60 } } }

环境变量

  • ANTD_MCP_CACHE_DIR 自定义缓存目录。

  • MCP_PRETTY / MCP_COLOR 控制输出格式。

版本

当前版本: 0.1.0

antd-mcp

-
security - not tested
A
license - permissive license
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fnlearner/antd-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server