Skip to main content
Glama

Genkit MCP

Official
by firebase
lyria_test.ts7.3 kB
/** * Copyright 2025 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import * as assert from 'assert'; import { GenerateRequest } from 'genkit/model'; import { GoogleAuth } from 'google-auth-library'; import { afterEach, beforeEach, describe, it } from 'node:test'; import * as sinon from 'sinon'; import { getGenkitClientHeader } from '../../src/common/utils.js'; import { getVertexAIUrl } from '../../src/vertexai/client.js'; import { fromLyriaResponse, toLyriaPredictRequest, } from '../../src/vertexai/converters.js'; import { LyriaConfigSchema, TEST_ONLY, defineModel, model, } from '../../src/vertexai/lyria.js'; import { LyriaPredictResponse, RegionalClientOptions, } from '../../src/vertexai/types.js'; const { GENERIC_MODEL, KNOWN_MODELS } = TEST_ONLY; describe('Vertex AI Lyria', () => { let fetchStub: sinon.SinonStub; let authMock: sinon.SinonStubbedInstance<GoogleAuth>; const modelName = 'lyria-test-model'; const defaultRegionalClientOptions: RegionalClientOptions = { kind: 'regional', projectId: 'test-project', location: 'us-central1', authClient: {} as any, }; beforeEach(() => { fetchStub = sinon.stub(global, 'fetch'); authMock = sinon.createStubInstance(GoogleAuth); authMock.getAccessToken.resolves('test-token'); defaultRegionalClientOptions.authClient = authMock as unknown as GoogleAuth; }); afterEach(() => { sinon.restore(); }); function mockFetchResponse(body: any, status = 200) { const response = new Response(JSON.stringify(body), { status: status, statusText: status === 200 ? 'OK' : 'Error', headers: { 'Content-Type': 'application/json' }, }); fetchStub.resolves(Promise.resolve(response)); } function getExpectedHeaders(): Record<string, string> { return { 'Content-Type': 'application/json', 'X-Goog-Api-Client': getGenkitClientHeader(), 'User-Agent': getGenkitClientHeader(), Authorization: 'Bearer test-token', 'x-goog-user-project': defaultRegionalClientOptions.projectId, }; } describe('model()', () => { it('should return a ModelReference for a known model', () => { const knownModelName = Object.keys(KNOWN_MODELS)[0]; const ref = model(knownModelName); assert.strictEqual(ref.name, `vertexai/${knownModelName}`); assert.ok(ref.info?.supports?.media); assert.deepStrictEqual(ref.info?.supports?.output, ['media']); }); it('should return a ModelReference for an unknown model using generic info', () => { const unknownModelName = 'lyria-unknown-model'; const ref = model(unknownModelName); assert.strictEqual(ref.name, `vertexai/${unknownModelName}`); assert.deepStrictEqual(ref.info, GENERIC_MODEL.info); }); it('should apply config to a known model', () => { const knownModelName = Object.keys(KNOWN_MODELS)[0]; const config = { negativePrompt: 'noisy' }; const ref = model(knownModelName, config); assert.strictEqual(ref.name, `vertexai/${knownModelName}`); assert.deepStrictEqual(ref.config, config); }); }); describe('defineModel()', () => { const prompt = 'A funky bass line'; const minimalRequest: GenerateRequest<typeof LyriaConfigSchema> = { messages: [{ role: 'user', content: [{ text: prompt }] }], config: { sampleCount: 2 }, }; const mockPrediction: LyriaPredictResponse = { predictions: [ { bytesBase64Encoded: 'base64audio1', mimeType: 'audio/wav', }, { bytesBase64Encoded: 'base64audio2', mimeType: 'audio/wav', }, ], }; it('should call fetch with correct params and return lyria response', async () => { mockFetchResponse(mockPrediction); const model = defineModel(modelName, defaultRegionalClientOptions); const result = await model.run(minimalRequest); sinon.assert.calledOnce(fetchStub); const fetchArgs = fetchStub.lastCall.args; const url = fetchArgs[0]; const options = fetchArgs[1]; const expectedUrl = getVertexAIUrl({ includeProjectAndLocation: true, resourcePath: `publishers/google/models/${modelName}`, resourceMethod: 'predict', clientOptions: defaultRegionalClientOptions, }); assert.strictEqual(url, expectedUrl); assert.strictEqual(options.method, 'POST'); assert.deepStrictEqual(options.headers, getExpectedHeaders()); const expectedPredictRequest = toLyriaPredictRequest(minimalRequest); assert.deepStrictEqual(JSON.parse(options.body), expectedPredictRequest); const expectedResponse = fromLyriaResponse( mockPrediction, minimalRequest ); assert.deepStrictEqual( result.result.candidates, expectedResponse.candidates ); assert.deepStrictEqual(result.result.usage, expectedResponse.usage); assert.deepStrictEqual(result.result.custom, expectedResponse.custom); assert.strictEqual(result.result.candidates?.length, 2); assert.strictEqual( result.result.candidates[0].message.content[0].media?.url, 'data:audio/wav;base64,base64audio1' ); }); it('should throw if no predictions are returned', async () => { mockFetchResponse({ predictions: [] }); const model = defineModel(modelName, defaultRegionalClientOptions); await assert.rejects( model.run(minimalRequest), /Model returned no predictions/ ); }); it('should propagate API errors', async () => { const errorBody = { error: { message: 'Quota exceeded', code: 429 } }; mockFetchResponse(errorBody, 429); const model = defineModel(modelName, defaultRegionalClientOptions); await assert.rejects( model.run(minimalRequest), /Error fetching from .*predict.* Quota exceeded/ ); }); it('should pass AbortSignal to fetch', async () => { mockFetchResponse(mockPrediction); const controller = new AbortController(); const abortSignal = controller.signal; const clientOptionsWithSignal = { ...defaultRegionalClientOptions, signal: abortSignal, }; const model = defineModel(modelName, clientOptionsWithSignal); await model.run(minimalRequest, { abortSignal }); sinon.assert.calledOnce(fetchStub); const fetchOptions = fetchStub.lastCall.args[1]; assert.ok(fetchOptions.signal, 'Fetch options should have a signal'); const fetchSignal = fetchOptions.signal; const abortSpy = sinon.spy(); fetchSignal.addEventListener('abort', abortSpy); controller.abort(); sinon.assert.calledOnce(abortSpy); }); }); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server