Skip to main content
Glama

Genkit MCP

Official
by firebase
converters_test.ts16.3 kB
/** * Copyright 2025 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import * as assert from 'assert'; import { GenerateRequest, z } from 'genkit'; import { describe, it } from 'node:test'; import { HarmBlockThreshold, HarmCategory } from '../../src/common/types.js'; import { fromImagenResponse, fromLyriaResponse, fromVeoOperation, toGeminiLabels, toGeminiSafetySettings, toImagenPredictRequest, toLyriaPredictRequest, toVeoMedia, toVeoModel, toVeoOperationRequest, toVeoPredictRequest, } from '../../src/vertexai/converters.js'; import { SafetySettingsSchema } from '../../src/vertexai/gemini.js'; import { ImagenConfigSchema } from '../../src/vertexai/imagen.js'; import { LyriaConfigSchema } from '../../src/vertexai/lyria.js'; import { ImagenPredictResponse, LyriaPredictResponse, VeoOperation, } from '../../src/vertexai/types.js'; import { VeoConfigSchema } from '../../src/vertexai/veo.js'; describe('Vertex AI Converters', () => { describe('toGeminiSafetySettings', () => { it('returns undefined for undefined input', () => { const result = toGeminiSafetySettings(undefined); assert.strictEqual(result, undefined); }); it('returns an empty array for an empty array input', () => { const result = toGeminiSafetySettings([]); assert.deepStrictEqual(result, []); }); it('converts genkit safety settings to Gemini safety settings', () => { const genkitSettings: z.infer<typeof SafetySettingsSchema>[] = [ { category: 'HARM_CATEGORY_HATE_SPEECH', threshold: 'BLOCK_LOW_AND_ABOVE', }, { category: 'HARM_CATEGORY_DANGEROUS_CONTENT', threshold: 'BLOCK_NONE', }, ]; const expected = [ { category: HarmCategory.HARM_CATEGORY_HATE_SPEECH, threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, }, { category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT, threshold: HarmBlockThreshold.BLOCK_NONE, }, ]; const result = toGeminiSafetySettings(genkitSettings); assert.deepStrictEqual(result, expected); }); }); describe('toGeminiLabels', () => { it('returns undefined for undefined input', () => { const result = toGeminiLabels(undefined); assert.strictEqual(result, undefined); }); it('returns undefined for an empty object input', () => { const result = toGeminiLabels({}); assert.strictEqual(result, undefined); }); it('converts an object with valid labels', () => { const labels = { env: 'production', 'my-label': 'my-value', }; const result = toGeminiLabels(labels); assert.deepStrictEqual(result, labels); }); it('filters out empty string keys', () => { const labels = { env: 'dev', '': 'should-be-ignored', 'valid-key': 'valid-value', }; const expected = { env: 'dev', 'valid-key': 'valid-value', }; const result = toGeminiLabels(labels); assert.deepStrictEqual(result, expected); }); it('returns undefined if all keys are empty strings', () => { const labels = { '': 'value1', }; const result = toGeminiLabels(labels); assert.strictEqual(result, undefined); }); it('handles labels with empty values', () => { const labels = { key1: '', key2: 'value2', }; const expected = { key1: '', key2: 'value2', }; const result = toGeminiLabels(labels); assert.deepStrictEqual(result, expected); }); }); describe('toImagenPredictRequest', () => { const baseRequest: GenerateRequest<typeof ImagenConfigSchema> = { messages: [{ role: 'user', content: [{ text: 'A cat on a mat' }] }], }; it('should create a basic ImagenPredictRequest with default sampleCount', () => { const result = toImagenPredictRequest(baseRequest); assert.deepStrictEqual(result, { instances: [{ prompt: 'A cat on a mat' }], parameters: { sampleCount: 1 }, }); }); it('should handle candidates and config parameters', () => { const request: GenerateRequest<typeof ImagenConfigSchema> = { ...baseRequest, candidates: 2, config: { seed: 42, negativePrompt: 'ugly', aspectRatio: '16:9', }, }; const result = toImagenPredictRequest(request); assert.deepStrictEqual(result, { instances: [{ prompt: 'A cat on a mat' }], parameters: { sampleCount: 2, seed: 42, negativePrompt: 'ugly', aspectRatio: '16:9', }, }); }); it('should omit undefined or null config parameters', () => { const request: GenerateRequest<typeof ImagenConfigSchema> = { ...baseRequest, config: { negativePrompt: undefined, seed: null as any, aspectRatio: '1:1', }, }; const result = toImagenPredictRequest(request); assert.deepStrictEqual(result, { instances: [{ prompt: 'A cat on a mat' }], parameters: { sampleCount: 1, aspectRatio: '1:1', }, }); }); it('should handle image and mask media', () => { const request: GenerateRequest<typeof ImagenConfigSchema> = { messages: [ { role: 'user', content: [ { text: 'A dog on a rug' }, { media: { url: '', contentType: 'image/png', }, metadata: { type: 'image' }, }, { media: { url: '', contentType: 'image/png', }, metadata: { type: 'mask' }, }, ], }, ], }; const result = toImagenPredictRequest(request); assert.deepStrictEqual(result, { instances: [ { prompt: 'A dog on a rug', image: { bytesBase64Encoded: 'IMAGEDATA' }, mask: { image: { bytesBase64Encoded: 'MASKDATA' } }, }, ], parameters: { sampleCount: 1 }, }); }); }); describe('fromImagenResponse', () => { it('should convert ImagenPredictResponse to GenerateResponseData', () => { const response: ImagenPredictResponse = { predictions: [ { bytesBase64Encoded: 'IMAGE1', mimeType: 'image/jpeg' }, { bytesBase64Encoded: 'IMAGE2', mimeType: 'image/png' }, ], }; const request: GenerateRequest<typeof ImagenConfigSchema> = { messages: [{ role: 'user', content: [{ text: 'test' }] }], }; const result = fromImagenResponse(response, request); assert.strictEqual(result.candidates?.length, 2); // Test structure from fromImagenPrediction logic assert.deepStrictEqual(result.candidates?.[0], { index: 0, finishReason: 'stop', message: { role: 'model', content: [ { media: { url: '', contentType: 'image/jpeg', }, }, ], }, }); assert.deepStrictEqual(result.candidates?.[1], { index: 1, finishReason: 'stop', message: { role: 'model', content: [ { media: { url: '', contentType: 'image/png', }, }, ], }, }); assert.strictEqual(result.custom, response); assert.ok(result.usage); }); }); describe('toLyriaPredictRequest', () => { const baseRequest: GenerateRequest<typeof LyriaConfigSchema> = { messages: [{ role: 'user', content: [{ text: 'A happy song' }] }], }; it('should create a basic LyriaPredictRequest', () => { const result = toLyriaPredictRequest(baseRequest); assert.deepStrictEqual(result, { instances: [{ prompt: 'A happy song' }], parameters: { sampleCount: 1 }, }); }); it('should handle config parameters', () => { const request: GenerateRequest<typeof LyriaConfigSchema> = { ...baseRequest, config: { negativePrompt: 'sad', seed: 123, sampleCount: 3, }, }; const result = toLyriaPredictRequest(request); assert.deepStrictEqual(result, { instances: [ { prompt: 'A happy song', negativePrompt: 'sad', seed: 123 }, ], parameters: { sampleCount: 3 }, }); }); }); describe('fromLyriaResponse', () => { it('should convert LyriaPredictResponse to GenerateResponseData', () => { const response: LyriaPredictResponse = { predictions: [{ bytesBase64Encoded: 'AUDIO1', mimeType: 'audio/wav' }], }; const request: GenerateRequest<typeof LyriaConfigSchema> = { messages: [{ role: 'user', content: [{ text: 'test' }] }], }; const result = fromLyriaResponse(response, request); assert.strictEqual(result.candidates?.length, 1); assert.deepStrictEqual(result.candidates?.[0], { index: 0, finishReason: 'stop', message: { role: 'model', content: [ { media: { url: 'data:audio/wav;base64,AUDIO1', contentType: 'audio/wav', }, }, ], }, }); assert.strictEqual(result.custom, response); assert.ok(result.usage); }); }); describe('toVeoMedia', () => { it('should convert data URL', () => { const mediaPart = { url: '', contentType: 'image/png', }; const result = toVeoMedia(mediaPart); assert.deepStrictEqual(result, { bytesBase64Encoded: 'VEODATA', mimeType: 'image/png', }); }); it('should convert gs URL', () => { const mediaPart = { url: 'gs://bucket/object', contentType: 'video/mp4', }; const result = toVeoMedia(mediaPart); assert.deepStrictEqual(result, { gcsUri: 'gs://bucket/object', mimeType: 'video/mp4', }); }); it('should throw on http URL', () => { const mediaPart = { url: 'http://example.com/image.jpg', contentType: 'image/jpeg', }; assert.throws(() => toVeoMedia(mediaPart), /Veo does not support http/); }); it('should infer mimeType if missing', () => { const mediaPart = { url: '' }; const result = toVeoMedia(mediaPart as any); assert.deepStrictEqual(result, { bytesBase64Encoded: 'VEODATA', mimeType: 'image/jpeg', }); }); }); describe('toVeoPredictRequest', () => { const baseRequest: GenerateRequest<typeof VeoConfigSchema> = { messages: [{ role: 'user', content: [{ text: 'A video of a sunset' }] }], }; it('should create a basic VeoPredictRequest', () => { const result = toVeoPredictRequest(baseRequest); assert.deepStrictEqual(result, { instances: [{ prompt: 'A video of a sunset' }], parameters: {}, }); }); it('should handle config parameters', () => { const request: GenerateRequest<typeof VeoConfigSchema> = { ...baseRequest, config: { durationSeconds: 5, fps: 24, aspectRatio: '16:9', }, }; const result = toVeoPredictRequest(request); assert.deepStrictEqual(result, { instances: [{ prompt: 'A video of a sunset' }], parameters: { durationSeconds: 5, fps: 24, aspectRatio: '16:9', }, }); }); it('should handle media parts', () => { const request: GenerateRequest<typeof VeoConfigSchema> = { messages: [ { role: 'user', content: [ { text: 'A video of a sunrise' }, { media: { url: '', contentType: 'image/jpeg', }, metadata: { type: 'image' }, }, { media: { url: 'gs://bucket/video.mp4', contentType: 'video/mp4', }, metadata: { type: 'video' }, }, ], }, ], }; const result = toVeoPredictRequest(request); assert.deepStrictEqual(result, { instances: [ { prompt: 'A video of a sunrise', image: { bytesBase64Encoded: 'IMAGEDATA', mimeType: 'image/jpeg', }, video: { gcsUri: 'gs://bucket/video.mp4', mimeType: 'video/mp4' }, }, ], parameters: {}, }); }); }); describe('fromVeoOperation', () => { it('should convert basic pending operation', () => { const veoOp: VeoOperation = { name: 'operations/123', done: false, }; const result = fromVeoOperation(veoOp); assert.deepStrictEqual(result, { id: 'operations/123', done: false, }); }); it('should convert done operation with videos', () => { const veoOp: VeoOperation = { name: 'operations/456', done: true, response: { videos: [ { gcsUri: 'gs://bucket/vid1.mp4', mimeType: 'video/mp4', }, { bytesBase64Encoded: 'VID2DATA', mimeType: 'video/webm', }, ], }, }; const result = fromVeoOperation(veoOp); assert.deepStrictEqual(result, { id: 'operations/456', done: true, output: { finishReason: 'stop', raw: veoOp.response, message: { role: 'model', content: [ { media: { url: 'gs://bucket/vid1.mp4', contentType: 'video/mp4', }, }, { media: { url: 'data:video/webm:base64,VID2DATA', contentType: 'video/webm', }, }, ], }, }, }); }); it('should convert operation with error', () => { const veoOp: VeoOperation = { name: 'operations/789', done: true, error: { code: 3, message: 'Invalid argument' }, }; const result = fromVeoOperation(veoOp); assert.deepStrictEqual(result, { id: 'operations/789', done: true, error: { message: 'Invalid argument' }, }); }); }); describe('toVeoModel', () => { it('should extract model name from operation id', () => { const op = { id: 'projects/test-project/locations/us-central1/models/veo-1.0/operations/12345', }; const result = toVeoModel(op); assert.strictEqual(result, 'veo-1.0'); }); }); describe('toVeoOperationRequest', () => { it('should create VeoOperationRequest from Operation', () => { const op = { id: 'operations/abcdef', }; const result = toVeoOperationRequest(op); assert.deepStrictEqual(result, { operationName: 'operations/abcdef', }); }); }); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server