Skip to main content
Glama

Genkit MCP

Official
by firebase
veo.ts5.47 kB
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { GenerateResponseData, GenkitError, Operation, z, type Genkit, } from 'genkit'; import { BackgroundModelAction, modelRef, type GenerateRequest, type ModelInfo, type ModelReference, } from 'genkit/model'; import { getApiKeyFromEnvVar } from './common.js'; import { Operation as ApiOperation, checkOp, predictModel } from './predict.js'; export type KNOWN_VEO_MODELS = 'veo-2.0-generate-001'; /** * See https://ai.google.dev/gemini-api/docs/video */ export const VeoConfigSchema = z .object({ // NOTE: Documentation notes numberOfVideos parameter to pick the number of // output videos, but this setting does not seem to work negativePrompt: z.string().optional(), aspectRatio: z .enum(['9:16', '16:9']) .describe('Desired aspect ratio of the output video.') .optional(), personGeneration: z .enum(['dont_allow', 'allow_adult', 'allow_all']) .describe( 'Control if/how images of people will be generated by the model.' ) .optional(), durationSeconds: z .number() .step(1) .min(5) .max(8) .describe('Length of each output video in seconds, between 5 and 8.') .optional(), enhance_prompt: z .boolean() .describe('Enable or disable the prompt rewriter. Enabled by default.') .optional(), }) .passthrough(); function extractText(request: GenerateRequest) { return request.messages .at(-1)! .content.map((c) => c.text || '') .join(''); } interface VeoParameters { sampleCount?: number; aspectRatio?: string; personGeneration?: string; } function toParameters( request: GenerateRequest<typeof VeoConfigSchema> ): VeoParameters { const out = { ...request?.config, }; for (const k in out) { if (!out[k]) delete out[k]; } return out; } function extractImage(request: GenerateRequest): VeoImage | undefined { const media = request.messages.at(-1)?.content.find((p) => !!p.media)?.media; if (media) { const img = media?.url.split(',')[1]; return { bytesBase64Encoded: img, mimeType: media.contentType!, }; } return undefined; } interface VeoImage { bytesBase64Encoded: string; mimeType: string; } interface VeoInstance { prompt: string; image?: VeoImage; } export const GENERIC_VEO_INFO = { label: `Google AI - Generic Veo`, supports: { media: true, multiturn: false, tools: false, systemRole: false, output: ['media'], longRunning: true, }, } as ModelInfo; export function defineVeoModel( ai: Genkit, name: string, apiKey?: string | false ): BackgroundModelAction<typeof VeoConfigSchema> { if (apiKey !== false) { apiKey = apiKey || getApiKeyFromEnvVar(); if (!apiKey) { throw new GenkitError({ status: 'FAILED_PRECONDITION', message: 'Please pass in the API key or set the GEMINI_API_KEY or GOOGLE_API_KEY environment variable.\n' + 'For more details see https://genkit.dev/docs/plugins/google-genai', }); } } const modelName = `googleai/${name}`; const model: ModelReference<z.ZodTypeAny> = modelRef({ name: modelName, info: { ...GENERIC_VEO_INFO, label: `Google AI - ${name}`, }, configSchema: VeoConfigSchema, }); return ai.defineBackgroundModel({ name: modelName, ...model.info, configSchema: VeoConfigSchema, async start(request) { const instance: VeoInstance = { prompt: extractText(request), }; const image = extractImage(request); if (image) { instance.image = image; } const predictClient = predictModel< VeoInstance, ApiOperation, VeoParameters >(model.version || name, apiKey as string, 'predictLongRunning'); const response = await predictClient([instance], toParameters(request)); return toGenkitOp(response); }, async check(operation) { const newOp = await checkOp(operation.id, apiKey as string); return toGenkitOp(newOp); }, }); } function toGenkitOp(apiOp: ApiOperation): Operation<GenerateResponseData> { const res = { id: apiOp.name } as Operation<GenerateResponseData>; if (apiOp.done !== undefined) { res.done = apiOp.done; } if (apiOp.error) { res.error = { message: apiOp.error.message }; } if ( apiOp.response && apiOp.response.generateVideoResponse && apiOp.response.generateVideoResponse.generatedSamples ) { res.output = { finishReason: 'stop', raw: apiOp.response, message: { role: 'model', content: apiOp.response.generateVideoResponse.generatedSamples.map( (s) => { return { media: { url: s.video.uri, }, }; } ), }, }; } return res; }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server