Skip to main content
Glama

Genkit MCP

Official
by firebase
imagen.ts4.96 kB
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { GenkitError, MessageData, z, type Genkit } from 'genkit'; import { getBasicUsageStats, modelRef, type GenerateRequest, type ModelAction, type ModelInfo, type ModelReference, } from 'genkit/model'; import { getApiKeyFromEnvVar } from './common.js'; import { predictModel } from './predict.js'; export type KNOWN_IMAGEN_MODELS = 'imagen-3.0-generate-002'; /** * See https://ai.google.dev/gemini-api/docs/image-generation#imagen-model */ export const ImagenConfigSchema = z .object({ numberOfImages: z .number() .describe( 'The number of images to generate, from 1 to 4 (inclusive). The default is 1.' ) .optional(), aspectRatio: z .enum(['1:1', '9:16', '16:9', '3:4', '4:3']) .describe('Desired aspect ratio of the output image.') .optional(), personGeneration: z .enum(['dont_allow', 'allow_adult', 'allow_all']) .describe( 'Control if/how images of people will be generated by the model.' ) .optional(), }) .passthrough(); interface ImagenParameters { sampleCount?: number; aspectRatio?: string; personGeneration?: string; } function toParameters( request: GenerateRequest<typeof ImagenConfigSchema> ): ImagenParameters { const out = { sampleCount: request.config?.numberOfImages ?? 1, ...request?.config, }; for (const k in out) { if (!out[k]) delete out[k]; } return out; } function extractText(request: GenerateRequest) { return request.messages .at(-1)! .content.map((c) => c.text || '') .join(''); } function extractBaseImage(request: GenerateRequest): string | undefined { return request.messages .at(-1) ?.content.find((p) => !!p.media) ?.media?.url.split(',')[1]; } interface ImagenPrediction { predictions: { bytesBase64Encoded: string; mimeType: string }[]; } interface ImagenInstance { prompt: string; image?: { bytesBase64Encoded: string }; mask?: { image?: { bytesBase64Encoded: string } }; } export const GENERIC_IMAGEN_INFO = { label: `Google AI - Generic Imagen`, supports: { media: true, multiturn: false, tools: false, systemRole: false, output: ['media'], }, } as ModelInfo; export function defineImagenModel( ai: Genkit, name: string, apiKey?: string | false ): ModelAction { if (apiKey !== false) { apiKey = apiKey || getApiKeyFromEnvVar(); if (!apiKey) { throw new GenkitError({ status: 'FAILED_PRECONDITION', message: 'Please pass in the API key or set the GEMINI_API_KEY or GOOGLE_API_KEY environment variable.\n' + 'For more details see https://genkit.dev/docs/plugins/google-genai', }); } } const modelName = `googleai/${name}`; const model: ModelReference<z.ZodTypeAny> = modelRef({ name: modelName, info: { ...GENERIC_IMAGEN_INFO, label: `Google AI - ${name}`, }, configSchema: ImagenConfigSchema, }); return ai.defineModel( { name: modelName, ...model.info, configSchema: ImagenConfigSchema, }, async (request) => { const instance: ImagenInstance = { prompt: extractText(request), }; const baseImage = extractBaseImage(request); if (baseImage) { instance.image = { bytesBase64Encoded: baseImage }; } const predictClient = predictModel< ImagenInstance, ImagenPrediction, ImagenParameters >(model.version || name, apiKey as string, 'predict'); const response = await predictClient([instance], toParameters(request)); if (!response.predictions || response.predictions.length == 0) { throw new Error( 'Model returned no predictions. Possibly due to content filters.' ); } const message = { role: 'model', content: [], } as MessageData; response.predictions.forEach((p, i) => { const b64data = p.bytesBase64Encoded; const mimeType = p.mimeType; message.content.push({ media: { url: `data:${mimeType};base64,${b64data}`, contentType: mimeType, }, }); }); return { finishReason: 'stop', message, usage: getBasicUsageStats(request.messages, message), custom: response, }; } ); }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/firebase/genkit'

If you have feedback or need assistance with the MCP directory API, please join our Discord server