test_local_images.py•8.96 kB
"""Tests for local image handling functionality."""
import base64
import tempfile
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from mcp_ai_hub.ai_client import AIClient
from mcp_ai_hub.config import AIHubConfig, ModelConfig
@pytest.fixture
def mock_config():
"""Create a mock configuration."""
config = MagicMock(spec=AIHubConfig)
config.model_list = [
ModelConfig(
model_name="test-model",
litellm_params={"model": "openai/gpt-4-vision-preview"},
)
]
config.global_system_prompt = None
config.list_available_models.return_value = ["test-model"]
config.get_model_config.return_value = config.model_list[0]
return config
@pytest.fixture
def ai_client(mock_config):
"""Create an AI client with mock configuration."""
return AIClient(mock_config)
def test_is_local_path(ai_client):
"""Test local path detection."""
# Local paths - should return True
assert ai_client._is_local_path("/path/to/image.jpg") is True
assert ai_client._is_local_path("/Users/john/Desktop/photo.png") is True
assert ai_client._is_local_path("C:\\Users\\john\\Pictures\\image.jpg") is True
assert ai_client._is_local_path("D:\\photos\\vacation.png") is True
# Non-local paths - should return False
assert ai_client._is_local_path("https://example.com/image.jpg") is False
assert ai_client._is_local_path("http://example.com/image.jpg") is False
assert ai_client._is_local_path("") is False
assert ai_client._is_local_path("relative/path/image.jpg") is False
def test_read_and_encode_image(ai_client):
"""Test reading and encoding a local image file."""
# Create a temporary image file
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
# Write some dummy image data
test_data = b"fake image data"
tmp_file.write(test_data)
tmp_file_path = tmp_file.name
try:
# Test successful encoding
result = ai_client._read_and_encode_image(tmp_file_path)
assert result is not None
assert result.startswith("data:image/jpeg;base64,")
# Decode and verify the data
base64_part = result.split(",")[1]
decoded_data = base64.b64decode(base64_part)
assert decoded_data == test_data
# Test non-existent file
result = ai_client._read_and_encode_image("/non/existent/file.jpg")
assert result is None
finally:
# Clean up
Path(tmp_file_path).unlink()
def test_process_content_item(ai_client):
"""Test processing individual content items."""
# Create a temporary image file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file:
tmp_file.write(b"test image")
tmp_file_path = tmp_file.name
try:
# Test local image path conversion
item = {"type": "image_url", "image_url": {"url": tmp_file_path}}
processed = ai_client._process_content_item(item)
assert processed["image_url"]["url"].startswith("data:image/png;base64,")
# Test remote URL (should not be modified)
item = {
"type": "image_url",
"image_url": {"url": "https://example.com/image.jpg"},
}
processed = ai_client._process_content_item(item)
assert processed["image_url"]["url"] == "https://example.com/image.jpg"
# Test text content (should not be modified)
item = {"type": "text", "text": "Hello"}
processed = ai_client._process_content_item(item)
assert processed == item
# Test non-dict item
processed = ai_client._process_content_item("plain string")
assert processed == "plain string"
finally:
Path(tmp_file_path).unlink()
def test_process_messages_for_local_images(ai_client):
"""Test processing messages with local images."""
# Create temporary image files
with (
tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp1,
tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp2,
):
tmp1.write(b"image 1")
tmp2.write(b"image 2")
path1, path2 = tmp1.name, tmp2.name
try:
# Test message with multiple local images
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Look at these images"},
{"type": "image_url", "image_url": {"url": path1}},
{"type": "image_url", "image_url": {"url": path2}},
],
},
{"role": "assistant", "content": "I'll analyze them"},
{
"role": "user",
"content": [
{"type": "text", "text": "And this one"},
{
"type": "image_url",
"image_url": {"url": "https://example.com/remote.jpg"},
},
],
},
]
processed = ai_client._process_messages_for_local_images(messages)
# Check first message - local images should be converted
assert processed[0]["content"][0]["type"] == "text"
assert processed[0]["content"][1]["image_url"]["url"].startswith(
"data:image/jpeg;base64,"
)
assert processed[0]["content"][2]["image_url"]["url"].startswith(
"data:image/png;base64,"
)
# Check second message - string content should be unchanged
assert processed[1]["content"] == "I'll analyze them"
# Check third message - remote URL should be unchanged
assert processed[2]["content"][0]["type"] == "text"
assert (
processed[2]["content"][1]["image_url"]["url"]
== "https://example.com/remote.jpg"
)
finally:
Path(path1).unlink()
Path(path2).unlink()
def test_chat_with_local_images(ai_client, mock_config):
"""Test the chat method with local images."""
# Create a temporary image file
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
tmp_file.write(b"test image data")
tmp_file_path = tmp_file.name
try:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{"type": "image_url", "image_url": {"url": tmp_file_path}},
],
}
]
# Mock the litellm.completion call
with patch("mcp_ai_hub.ai_client.litellm.completion") as mock_completion:
mock_response = MagicMock()
mock_response.model_dump.return_value = {
"choices": [{"message": {"content": "I see an image"}}]
}
mock_completion.return_value = mock_response
# Call chat method
ai_client.chat("test-model", messages)
# Verify that litellm was called with base64-encoded image
called_messages = mock_completion.call_args[1]["messages"]
assert len(called_messages) == 1
assert called_messages[0]["content"][1]["image_url"]["url"].startswith(
"data:image/jpeg;base64,"
)
finally:
Path(tmp_file_path).unlink()
def test_mixed_image_types(ai_client):
"""Test handling of mixed image types in a single message."""
with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file:
tmp_file.write(b"local image")
local_path = tmp_file.name
try:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "Compare these images"},
{"type": "image_url", "image_url": {"url": local_path}},
{
"type": "image_url",
"image_url": {"url": "https://example.com/remote.jpg"},
},
{
"type": "image_url",
"image_url": {"url": ""},
},
],
}
]
processed = ai_client._process_messages_for_local_images(messages)
# Local path should be converted
assert processed[0]["content"][1]["image_url"]["url"].startswith(
"data:image/jpeg;base64,"
)
# Remote URL should remain unchanged
assert (
processed[0]["content"][2]["image_url"]["url"]
== "https://example.com/remote.jpg"
)
# Base64 should remain unchanged
assert (
processed[0]["content"][3]["image_url"]["url"]
== ""
)
finally:
Path(local_path).unlink()