Skip to main content
Glama

MCP AI Hub

by feiskyer
test_local_images.py8.96 kB
"""Tests for local image handling functionality.""" import base64 import tempfile from pathlib import Path from unittest.mock import MagicMock, patch import pytest from mcp_ai_hub.ai_client import AIClient from mcp_ai_hub.config import AIHubConfig, ModelConfig @pytest.fixture def mock_config(): """Create a mock configuration.""" config = MagicMock(spec=AIHubConfig) config.model_list = [ ModelConfig( model_name="test-model", litellm_params={"model": "openai/gpt-4-vision-preview"}, ) ] config.global_system_prompt = None config.list_available_models.return_value = ["test-model"] config.get_model_config.return_value = config.model_list[0] return config @pytest.fixture def ai_client(mock_config): """Create an AI client with mock configuration.""" return AIClient(mock_config) def test_is_local_path(ai_client): """Test local path detection.""" # Local paths - should return True assert ai_client._is_local_path("/path/to/image.jpg") is True assert ai_client._is_local_path("/Users/john/Desktop/photo.png") is True assert ai_client._is_local_path("C:\\Users\\john\\Pictures\\image.jpg") is True assert ai_client._is_local_path("D:\\photos\\vacation.png") is True # Non-local paths - should return False assert ai_client._is_local_path("https://example.com/image.jpg") is False assert ai_client._is_local_path("http://example.com/image.jpg") is False assert ai_client._is_local_path("") is False assert ai_client._is_local_path("relative/path/image.jpg") is False def test_read_and_encode_image(ai_client): """Test reading and encoding a local image file.""" # Create a temporary image file with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file: # Write some dummy image data test_data = b"fake image data" tmp_file.write(test_data) tmp_file_path = tmp_file.name try: # Test successful encoding result = ai_client._read_and_encode_image(tmp_file_path) assert result is not None assert result.startswith("data:image/jpeg;base64,") # Decode and verify the data base64_part = result.split(",")[1] decoded_data = base64.b64decode(base64_part) assert decoded_data == test_data # Test non-existent file result = ai_client._read_and_encode_image("/non/existent/file.jpg") assert result is None finally: # Clean up Path(tmp_file_path).unlink() def test_process_content_item(ai_client): """Test processing individual content items.""" # Create a temporary image file with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file: tmp_file.write(b"test image") tmp_file_path = tmp_file.name try: # Test local image path conversion item = {"type": "image_url", "image_url": {"url": tmp_file_path}} processed = ai_client._process_content_item(item) assert processed["image_url"]["url"].startswith("data:image/png;base64,") # Test remote URL (should not be modified) item = { "type": "image_url", "image_url": {"url": "https://example.com/image.jpg"}, } processed = ai_client._process_content_item(item) assert processed["image_url"]["url"] == "https://example.com/image.jpg" # Test text content (should not be modified) item = {"type": "text", "text": "Hello"} processed = ai_client._process_content_item(item) assert processed == item # Test non-dict item processed = ai_client._process_content_item("plain string") assert processed == "plain string" finally: Path(tmp_file_path).unlink() def test_process_messages_for_local_images(ai_client): """Test processing messages with local images.""" # Create temporary image files with ( tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp1, tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp2, ): tmp1.write(b"image 1") tmp2.write(b"image 2") path1, path2 = tmp1.name, tmp2.name try: # Test message with multiple local images messages = [ { "role": "user", "content": [ {"type": "text", "text": "Look at these images"}, {"type": "image_url", "image_url": {"url": path1}}, {"type": "image_url", "image_url": {"url": path2}}, ], }, {"role": "assistant", "content": "I'll analyze them"}, { "role": "user", "content": [ {"type": "text", "text": "And this one"}, { "type": "image_url", "image_url": {"url": "https://example.com/remote.jpg"}, }, ], }, ] processed = ai_client._process_messages_for_local_images(messages) # Check first message - local images should be converted assert processed[0]["content"][0]["type"] == "text" assert processed[0]["content"][1]["image_url"]["url"].startswith( "data:image/jpeg;base64," ) assert processed[0]["content"][2]["image_url"]["url"].startswith( "data:image/png;base64," ) # Check second message - string content should be unchanged assert processed[1]["content"] == "I'll analyze them" # Check third message - remote URL should be unchanged assert processed[2]["content"][0]["type"] == "text" assert ( processed[2]["content"][1]["image_url"]["url"] == "https://example.com/remote.jpg" ) finally: Path(path1).unlink() Path(path2).unlink() def test_chat_with_local_images(ai_client, mock_config): """Test the chat method with local images.""" # Create a temporary image file with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file: tmp_file.write(b"test image data") tmp_file_path = tmp_file.name try: messages = [ { "role": "user", "content": [ {"type": "text", "text": "What's in this image?"}, {"type": "image_url", "image_url": {"url": tmp_file_path}}, ], } ] # Mock the litellm.completion call with patch("mcp_ai_hub.ai_client.litellm.completion") as mock_completion: mock_response = MagicMock() mock_response.model_dump.return_value = { "choices": [{"message": {"content": "I see an image"}}] } mock_completion.return_value = mock_response # Call chat method ai_client.chat("test-model", messages) # Verify that litellm was called with base64-encoded image called_messages = mock_completion.call_args[1]["messages"] assert len(called_messages) == 1 assert called_messages[0]["content"][1]["image_url"]["url"].startswith( "data:image/jpeg;base64," ) finally: Path(tmp_file_path).unlink() def test_mixed_image_types(ai_client): """Test handling of mixed image types in a single message.""" with tempfile.NamedTemporaryFile(suffix=".jpg", delete=False) as tmp_file: tmp_file.write(b"local image") local_path = tmp_file.name try: messages = [ { "role": "user", "content": [ {"type": "text", "text": "Compare these images"}, {"type": "image_url", "image_url": {"url": local_path}}, { "type": "image_url", "image_url": {"url": "https://example.com/remote.jpg"}, }, { "type": "image_url", "image_url": {"url": ""}, }, ], } ] processed = ai_client._process_messages_for_local_images(messages) # Local path should be converted assert processed[0]["content"][1]["image_url"]["url"].startswith( "data:image/jpeg;base64," ) # Remote URL should remain unchanged assert ( processed[0]["content"][2]["image_url"]["url"] == "https://example.com/remote.jpg" ) # Base64 should remain unchanged assert ( processed[0]["content"][3]["image_url"]["url"] == "" ) finally: Path(local_path).unlink()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/feiskyer/mcp-ai-hub'

If you have feedback or need assistance with the MCP directory API, please join our Discord server