Provides access to Google's Gemini models (Pro, Pro Vision, Ultra) for AI chat and completion capabilities
Enables interaction with various open-source AI models hosted on Hugging Face through the unified LiteLLM interface
Provides access to locally deployed AI models through Ollama for private, on-device AI chat and completion tasks
Enables interaction with OpenAI's models including GPT-4, GPT-3.5-turbo, and GPT-4-turbo through a unified chat interface
MCP AI Hub
A Model Context Protocol (MCP) server that provides unified access to various AI providers through LiteLM. Chat with OpenAI, Anthropic, and 100+ other AI models using a single, consistent interface.
🌟 Overview
MCP AI Hub acts as a bridge between MCP clients (like Claude Desktop/Code) and multiple AI providers. It leverages LiteLM's unified API to provide seamless access to 100+ AI models without requiring separate integrations for each provider.
Key Benefits:
- Unified Interface: Single API for all AI providers
- 100+ Providers: OpenAI, Anthropic, Google, Azure, AWS Bedrock, and more
- MCP Protocol: Native integration with Claude Desktop and Claude Code
- Flexible Configuration: YAML-based configuration with Pydantic validation
- Multiple Transports: stdio, SSE, and HTTP transport options
- Custom Endpoints: Support for proxy servers and local deployments
Quick Start
1. Install
Choose your preferred installation method:
Installation Notes:
uv
is a fast Python package installer and resolver- The package requires Python 3.10 or higher
- All dependencies are automatically resolved and installed
2. Configure
Create a configuration file at ~/.ai_hub.yaml
with your API keys and model configurations:
Configuration Guidelines:
- API Keys: Replace placeholder keys with your actual API keys
- Model Names: Use descriptive names you'll remember (e.g.,
gpt-4
,claude-sonnet
) - LiteLM Models: Use LiteLM's provider/model format (e.g.,
openai/gpt-4
,anthropic/claude-3-5-sonnet-20241022
) - Parameters: Configure
max_tokens
,temperature
, and other LiteLM-supported parameters - Security: Keep your config file secure with appropriate file permissions (chmod 600)
3. Connect to Claude Desktop
Configure Claude Desktop to use MCP AI Hub by editing your configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
4. Connect to Claude Code
Advanced Usage
CLI Options and Transport Types
MCP AI Hub supports multiple transport mechanisms for different use cases:
Command Line Options:
Transport Type Details:
Transport | Use Case | Default Host | Description |
---|---|---|---|
stdio | MCP clients (Claude Desktop/Code) | N/A | Standard input/output, default for MCP |
sse | Web applications | localhost:3001 | Server-Sent Events for real-time web apps |
http | Direct API calls | localhost:3001 (override with --port ) | HTTP transport with streaming support |
CLI Arguments:
--transport {stdio,sse,http}
: Transport protocol (default: stdio)--host HOST
: Host address for SSE/HTTP (default: localhost)--port PORT
: Port number for SSE/HTTP (default: 3001; override if you need a different port)--config CONFIG
: Custom config file path (default: ~/.ai_hub.yaml)--log-level {DEBUG,INFO,WARNING,ERROR}
: Logging verbosity (default: INFO)
Usage
Once MCP AI Hub is connected to your MCP client, you can interact with AI models using these tools:
MCP Tool Reference
Primary Chat Tool:
- model_name: Name of the configured model (e.g., "gpt-4", "claude-sonnet")
- message: String message or OpenAI-style message list
- Returns: AI model response as string
Model Discovery Tools:
- Returns: List of all configured model names
- model_name: Name of the configured model
- Returns: Model configuration details including provider, parameters, etc.
Configuration
MCP AI Hub supports 100+ AI providers through LiteLM. Configure your models in ~/.ai_hub.yaml
with API keys and custom parameters.
Supported Providers
Major AI Providers:
- OpenAI: GPT-4, GPT-3.5-turbo, GPT-4-turbo, etc.
- Anthropic: Claude 3.5 Sonnet, Claude 3 Haiku, Claude 3 Opus
- Google: Gemini Pro, Gemini Pro Vision, Gemini Ultra
- Azure OpenAI: Azure-hosted OpenAI models
- AWS Bedrock: Claude, Llama, Jurassic, and more
- Together AI: Llama, Mistral, Falcon, and open-source models
- Hugging Face: Various open-source models
- Local Models: Ollama, LM Studio, and other local deployments
Configuration Parameters:
- api_key: Your provider API key (required)
- max_tokens: Maximum response tokens (optional)
- temperature: Response creativity 0.0-1.0 (optional)
- api_base: Custom endpoint URL (for proxies/local servers)
- Additional: All LiteLM-supported parameters
Configuration Examples
Basic Configuration:
Custom Parameters:
Local LLM Server Configuration:
For more providers, please refer to the LiteLLM docs: https://docs.litellm.ai/docs/providers.
Development
Setup:
Running and Testing:
Code Quality:
Troubleshooting
Configuration Issues
Configuration File Problems:
- File Location: Ensure
~/.ai_hub.yaml
exists in your home directory - YAML Validity: Validate YAML syntax using online validators or
python -c "import yaml; yaml.safe_load(open('~/.ai_hub.yaml'))"
- File Permissions: Set secure permissions with
chmod 600 ~/.ai_hub.yaml
- Path Resolution: Use absolute paths in custom config locations
Configuration Validation:
- Required Fields: Each model must have
model_name
andlitellm_params
- API Keys: Verify API keys are properly quoted and not expired
- Model Formats: Use LiteLM-compatible model identifiers (e.g.,
openai/gpt-4
,anthropic/claude-3-5-sonnet-20241022
)
API and Authentication Errors
Authentication Issues:
- Invalid API Keys: Check for typos, extra spaces, or expired keys
- Insufficient Permissions: Verify API keys have necessary model access permissions
- Rate Limiting: Monitor API usage and implement retry logic if needed
- Regional Restrictions: Some models may not be available in all regions
API-Specific Troubleshooting:
- OpenAI: Check organization settings and model availability
- Anthropic: Verify Claude model access and usage limits
- Azure OpenAI: Ensure proper resource deployment and endpoint configuration
- Google Gemini: Check project setup and API enablement
MCP Connection Issues
Server Startup Problems:
- Port Conflicts: Use different ports for SSE/HTTP transports if defaults are in use
- Permission Errors: Ensure executable permissions for
mcp-ai-hub
command - Python Path: Verify Python environment and package installation
Client Configuration Issues:
- Command Path: Ensure
mcp-ai-hub
is in PATH or use full absolute path - Working Directory: Some MCP clients require specific working directory settings
- Transport Mismatch: Use stdio transport for Claude Desktop/Code
Performance and Reliability
Response Time Issues:
- Network Latency: Use geographically closer API endpoints when possible
- Model Selection: Some models are faster than others (e.g., GPT-3.5 vs GPT-4)
- Token Limits: Large
max_tokens
values can increase response time
Reliability Improvements:
- Retry Logic: Implement exponential backoff for transient failures
- Timeout Configuration: Set appropriate timeouts for your use case
- Health Checks: Monitor server status and restart if needed
- Load Balancing: Use multiple model configurations for redundancy
License
MIT License - see LICENSE file for details.
Contributing
We welcome contributions! Please follow these guidelines:
Development Workflow
- Fork and Clone: Fork the repository and clone your fork
- Create Branch: Create a feature branch (
git checkout -b feature/amazing-feature
) - Development Setup: Install dependencies with
uv sync
- Make Changes: Implement your feature or fix
- Testing: Add tests and ensure all tests pass
- Code Quality: Run formatting, linting, and type checking
- Documentation: Update documentation if needed
- Submit PR: Create a pull request with detailed description
Code Standards
Python Style:
- Follow PEP 8 style guidelines
- Use type hints for all functions
- Add docstrings for public functions and classes
- Keep functions focused and small
Testing Requirements:
- Write tests for new functionality
- Ensure existing tests continue to pass
- Aim for good test coverage
- Test edge cases and error conditions
Documentation:
- Update README.md for user-facing changes
- Add inline comments for complex logic
- Update configuration examples if needed
- Document breaking changes clearly
Quality Checks
Before submitting a PR, ensure:
Issues and Feature Requests
- Use GitHub Issues for bug reports and feature requests
- Provide detailed reproduction steps for bugs
- Include configuration examples when relevant
- Check existing issues before creating new ones
- Label issues appropriately
This server cannot be installed
hybrid server
The server is able to function both locally and remotely, depending on the configuration or use case.
Provides unified access to 100+ AI models from OpenAI, Anthropic, Google, AWS Bedrock and other providers through a single MCP interface. Enables seamless switching between different AI models using LiteLM's unified API without requiring separate integrations for each provider.