Skip to main content
Glama

trackio-mcp

by fcakyon
basic_usage.py4.18 kB
""" Basic example of using trackio-mcp. This example shows how to use trackio with MCP server functionality enabled automatically by importing trackio_mcp first. """ # Import trackio_mcp BEFORE trackio to enable MCP functionality import trackio_mcp # Now import trackio as usual (MCP server will be enabled automatically) import trackio as wandb import random import time def simulate_training_run(): """Simulate a machine learning training run with metrics logging.""" # Initialize trackio run (MCP server will be enabled automatically) wandb.init( project="mcp-example", name="basic-training", config={ "learning_rate": 0.001, "batch_size": 32, "epochs": 10, "model": "resnet50" } ) print("Training started with MCP server enabled!") print("MCP Server: http://localhost:7860/gradio_api/mcp/sse") print("API Schema: http://localhost:7860/gradio_api/mcp/schema") # Simulate training loop for epoch in range(10): # Simulate training metrics train_loss = 2.0 * (0.8 ** epoch) + random.uniform(0, 0.1) train_acc = min(0.95, 0.5 + epoch * 0.05 + random.uniform(0, 0.02)) # Simulate validation metrics val_loss = train_loss - random.uniform(0.01, 0.05) val_acc = min(0.97, train_acc + random.uniform(0.01, 0.03)) # Log metrics (these will be available via MCP tools) wandb.log({ "epoch": epoch, "train/loss": train_loss, "train/accuracy": train_acc, "val/loss": val_loss, "val/accuracy": val_acc, "learning_rate": 0.001 * (0.95 ** epoch), "gpu_memory": random.uniform(0.7, 0.9), }) print(f"Epoch {epoch}: train_acc={train_acc:.3f}, val_acc={val_acc:.3f}") time.sleep(0.5) # Simulate training time wandb.finish() print("Training completed!") def demonstrate_mcp_tools(): """Demonstrate the MCP tools that are now available.""" print("\n" + "="*50) print("MCP TOOLS AVAILABLE FOR AI AGENTS") print("="*50) print("\nCore Trackio Tools (via Gradio API):") print(" • log - Log metrics to trackio") print(" • upload_db_to_space - Upload database to HF Space") print("\nExtended Tools (via trackio-mcp):") print(" • get_projects - List all trackio projects") print(" • get_runs - Get runs for a project") print(" • filter_runs - Filter runs by pattern") print(" • get_run_metrics - Get metrics for a specific run") print(" • get_available_metrics - Get available metric names") print(" • load_run_data - Load processed run data") print(" • get_project_summary - Get project statistics") print("\nExample AI Agent Usage:") print(' Human: "Show me the latest results from my training"') print(' Agent: [Uses get_projects, get_runs, get_run_metrics tools]') print(' Agent: "Your latest run achieved 94.7% validation accuracy!"') print("\nMCP Client Configuration:") print(' {') print(' "mcpServers": {') print(' "trackio": {') print(' "url": "http://localhost:7860/gradio_api/mcp/sse"') print(' }') print(' }') print(' }') if __name__ == "__main__": print("Trackio-MCP Basic Example") print("This will create a trackio experiment with MCP server enabled") # Run the training simulation simulate_training_run() # Show available MCP tools demonstrate_mcp_tools() print(f"\nDone! The MCP server is running and AI agents can now:") print(f" • Monitor your experiment progress") print(f" • Query metrics and results") print(f" • Get project summaries") print(f" • Filter and analyze runs") print(f"\nTry asking an AI agent connected to the MCP server:") print(f' "What experiments are available in my trackio setup?"') print(f' "Show me the training progress for my latest run"') print(f' "What metrics are being tracked in the mcp-example project?"')

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/fcakyon/trackio-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server