aggregation.py•10.2 kB
# 空间聚合和聚类函数
from fastmcp import FastMCP
from turf_mcp.utils import call_js_script
aggregation_mcp = FastMCP("aggregation")
@aggregation_mcp.tool
async def collect(polygons: str, points: str, in_field: str, out_field: str) -> str:
"""
将点属性聚合到多边形中。
此功能将位于多边形内部的点的属性值聚合到多边形中,用于统计和汇总分析。
Args:
polygons: 多边形特征集合
- 类型: str (JSON 字符串格式的 GeoJSON FeatureCollection)
- 格式: FeatureCollection with Polygon or MultiPolygon features
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[125, -15], [113, -22], [154, -27], [144, -15], [125, -15]]]}}, ...]}'
points: 点特征集合
- 类型: str (JSON 字符串格式的 GeoJSON FeatureCollection)
- 格式: FeatureCollection with Point features
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984], "properties": {"population": 100}}, ...]}'
in_field: 输入字段名
- 类型: str
- 描述: 点特征中要聚合的属性字段名
- 示例: 'population'
out_field: 输出字段名
- 类型: str
- 描述: 多边形特征中要创建的聚合属性字段名
- 示例: 'total_population'
Returns:
str: JSON 字符串格式的 GeoJSON FeatureCollection
- 类型: GeoJSON FeatureCollection with Polygon features
- 格式: {"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [...]}, "properties": {..., "total_population": 聚合值}}, ...]}
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [...]}, "properties": {"total_population": 1500}}, ...]}'
Raises:
Exception: 当 JavaScript 执行失败、超时或输入数据格式错误时抛出异常
Example:
>>> import asyncio
>>> polygons = '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [[[125, -15], [113, -22], [154, -27], [144, -15], [125, -15]]]}}]}'
>>> points = '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984], "properties": {"population": 100}}]}'
>>> result = asyncio.run(collect(polygons, points, 'population', 'total_population'))
>>> print(result)
'{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Polygon", "coordinates": [...]}, "properties": {"total_population": 100}}, ...]}'
Notes:
- 输入参数 polygons 和 points 必须是有效的 JSON 字符串
- 坐标顺序为 [经度, 纬度] (WGS84 坐标系)
- 仅对位于多边形内部的点进行属性聚合
- 聚合方式为求和,即计算多边形内部所有点的属性值总和
- 依赖于 Turf.js 库和 Node.js 环境
"""
js_script = f"""
const turf = require('@turf/turf');
const polygons = JSON.parse('{polygons}');
const points = JSON.parse('{points}');
const inField = '{in_field}';
const outField = '{out_field}';
const result = turf.collect(polygons, points, inField, outField);
console.log(JSON.stringify(result));
"""
try:
return await call_js_script(js_script)
except Exception as e:
raise Exception(f"执行异常: {str(e)}")
@aggregation_mcp.tool
async def clustersDbscan(points: str, max_distance: float, options: str = None) -> str:
"""
使用 DBSCAN 算法进行点聚类。
此功能使用基于密度的空间聚类算法 (DBSCAN) 对点进行聚类,识别密集区域。
Args:
points: 点特征集合
- 类型: str (JSON 字符串格式的 GeoJSON FeatureCollection)
- 格式: FeatureCollection with Point features
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}}, ...]}'
max_distance: 最大距离
- 类型: float
- 描述: 聚类搜索的最大距离(单位:千米)
- 示例: 100.0
options: 可选参数配置
- 类型: str (JSON 字符串) 或 None
- 可选字段:
- units: 距离单位 (默认: 'kilometers')
- 有效值: 'miles', 'nauticalmiles', 'kilometers', 'meters', 'yards', 'feet', 'inches'
- minPoints: 形成聚类所需的最小点数 (默认: 3)
- 示例: '{"units": "miles", "minPoints": 5}'
Returns:
str: JSON 字符串格式的 GeoJSON FeatureCollection
- 类型: GeoJSON FeatureCollection with Point features
- 格式: {"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [lng, lat]}, "properties": {"cluster": 聚类编号, ...}}, ...]}
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}, "properties": {"cluster": 1}}, ...]}'
Raises:
Exception: 当 JavaScript 执行失败、超时或输入数据格式错误时抛出异常
Example:
>>> import asyncio
>>> points = '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}}]}'
>>> result = asyncio.run(clustersDbscan(points, 100.0, '{"minPoints": 3}'))
>>> print(result)
'{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}, "properties": {"cluster": 1}}, ...]}'
Notes:
- 输入参数 points 和 options 必须是有效的 JSON 字符串
- 坐标顺序为 [经度, 纬度] (WGS84 坐标系)
- DBSCAN 算法能够识别任意形状的聚类,并处理噪声点
- 聚类编号从 0 开始,-1 表示噪声点(不属于任何聚类)
- 依赖于 Turf.js 库和 Node.js 环境
"""
options_param = options if options else '{}'
js_script = f"""
const turf = require('@turf/turf');
const points = JSON.parse('{points}');
const maxDistance = parseFloat({max_distance});
const options = JSON.parse('{options_param}');
const result = turf.clustersDbscan(points, maxDistance, options);
console.log(JSON.stringify(result));
"""
try:
return await call_js_script(js_script)
except Exception as e:
raise Exception(f"执行异常: {str(e)}")
@aggregation_mcp.tool
async def clustersKmeans(points: str, number_of_clusters: int, options: str = None) -> str:
"""
使用 K-means 算法进行点聚类。
此功能使用 K-means 聚类算法对点进行聚类,将点划分为指定数量的簇。
Args:
points: 点特征集合
- 类型: str (JSON 字符串格式的 GeoJSON FeatureCollection)
- 格式: FeatureCollection with Point features
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}}, ...]}'
number_of_clusters: 聚类数量
- 类型: int
- 描述: 要创建的聚类数量
- 示例: 5
options: 可选参数配置
- 类型: str (JSON 字符串) 或 None
- 可选字段:
- numberOfClusters: 聚类数量(与 number_of_clusters 参数相同)
- mutate: 是否修改原始特征 (默认: false)
- 示例: '{"mutate": true}'
Returns:
str: JSON 字符串格式的 GeoJSON FeatureCollection
- 类型: GeoJSON FeatureCollection with Point features
- 格式: {"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [lng, lat]}, "properties": {"cluster": 聚类编号, ...}}, ...]}
- 示例: '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}, "properties": {"cluster": 1}}, ...]}'
Raises:
Exception: 当 JavaScript 执行失败、超时或输入数据格式错误时抛出异常
Example:
>>> import asyncio
>>> points = '{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}}]}'
>>> result = asyncio.run(clustersKmeans(points, 5))
>>> print(result)
'{"type": "FeatureCollection", "features": [{"type": "Feature", "geometry": {"type": "Point", "coordinates": [-75.343, 39.984]}, "properties": {"cluster": 1}}, ...]}'
Notes:
- 输入参数 points 和 options 必须是有效的 JSON 字符串
- 坐标顺序为 [经度, 纬度] (WGS84 坐标系)
- K-means 算法需要预先指定聚类数量
- 聚类编号从 0 开始
- 算法使用随机初始中心点,每次运行结果可能不同
- 依赖于 Turf.js 库和 Node.js 环境
"""
options_param = options if options else '{}'
js_script = f"""
const turf = require('@turf/turf');
const points = JSON.parse('{points}');
const numberOfClusters = parseInt({number_of_clusters});
const options = JSON.parse('{options_param}');
const result = turf.clustersKmeans(points, numberOfClusters, options);
console.log(JSON.stringify(result));
"""
try:
return await call_js_script(js_script)
except Exception as e:
raise Exception(f"执行异常: {str(e)}")