Skip to main content
Glama

mcp__gemini__performance_predictor

Predict system performance metrics like response time and throughput across load scenarios, enabling data-driven optimizations and capacity planning for 12-month horizons.

Instructions

AI-powered performance prediction and optimization recommendations with capacity planning

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
load_scenariosNoLoad scenarios to predict
metricsNoPerformance metrics to predict
prediction_horizonNoPrediction timeframe12 months
systemYesSystem or code to analyze

Implementation Reference

  • The primary handler function implementing the tool's logic. It takes system details and scenarios, crafts detailed AI prompts for performance prediction and optimization recommendations, calls the AI client twice, and formats a comprehensive response.
    handler: async (args) => { const { system, load_scenarios = ['current', '2x', '10x'], metrics = ['response_time', 'throughput', 'resource_usage'], prediction_horizon = '12 months' } = args; validateString(system, 'system'); const timer = performanceMonitor.startTimer('performance_predictor'); const predictionPrompt = `Create AI-powered performance prediction model: **System**: ${system} **Load Scenarios**: ${load_scenarios.join(', ')} **Metrics**: ${metrics.join(', ')} **Prediction Horizon**: ${prediction_horizon} Analyze and predict: 1. **Current Performance Baseline** - Current performance characteristics - Resource utilization patterns - Bottleneck identification - Scalability limits 2. **Performance Predictions by Load** ${load_scenarios.map(scenario => `- **${scenario} Load**: Predicted performance metrics and breaking points`).join('\n ')} 3. **Capacity Planning** - Resource requirements for each scenario - Infrastructure scaling recommendations - Cost implications of scaling - Optimal scaling thresholds 4. **Performance Optimization Roadmap** - Priority optimization opportunities - Expected performance gains - Implementation effort vs impact - Monitoring and alerting strategy 5. **Predictive Modeling** - Performance degradation patterns - Early warning indicators - Automated scaling triggers - Capacity forecasting Provide specific numbers, thresholds, and actionable recommendations.`; const performancePrediction = await aiClient.call(predictionPrompt, 'analysis', { complexity: 'complex', maxTokens: 4000 }); // Generate optimization recommendations const optimizationPrompt = `Based on performance predictions, create optimization strategy: ${performancePrediction} Provide: 1. **Immediate Optimizations** (0-3 months) - Quick wins with high impact - Low-effort improvements - Performance monitoring setup 2. **Medium-term Improvements** (3-12 months) - Architectural optimizations - Technology upgrades - Process improvements 3. **Long-term Strategic Changes** (12+ months) - Platform modernization - Scalability architecture - Future-proofing initiatives 4. **Implementation Roadmap** - Prioritized action plan - Resource requirements - Success metrics - Risk mitigation Include cost-benefit analysis for each optimization.`; const optimizationStrategy = await aiClient.call(optimizationPrompt, 'analysis'); timer.end(); return `🚀 **Performance Prediction Model** (${prediction_horizon}) **System**: ${system} **Load Scenarios**: ${load_scenarios.join(', ')} **Metrics**: ${metrics.join(', ')} --- 📊 **Performance Predictions** ${performancePrediction} --- ⚡ **Optimization Strategy** ${optimizationStrategy}`; }
  • Input schema defining the parameters for the performance predictor tool, including required system description and optional load scenarios, metrics, and prediction horizon.
    parameters: { system: { type: 'string', description: 'System or code to analyze', required: true }, load_scenarios: { type: 'array', description: 'Load scenarios to predict', default: ['current', '2x', '10x'] }, metrics: { type: 'array', description: 'Performance metrics to predict', default: ['response_time', 'throughput', 'resource_usage'] }, prediction_horizon: { type: 'string', description: 'Prediction timeframe', default: '12 months' }
  • Generic registration function used to register all tools from the businessTools module, including 'mcp__gemini__performance_predictor', by calling registerTool for each entry.
    registerToolsFromModule(toolsModule) { Object.entries(toolsModule).forEach(([name, tool]) => { this.registerTool(name, tool.description, tool.parameters, tool.handler); }); }
  • Specific call to register the businessTools module containing the 'mcp__gemini__performance_predictor' tool.
    this.registerToolsFromModule(businessTools);

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/emmron/gemini-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server