Skip to main content
Glama

mcp__gemini__create_project_tasks

Automate project task creation by converting requirements into actionable tasks tailored to project type and complexity. Streamline planning and execution with this AI-powered tool.

Instructions

Create project tasks from requirements

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
complexityNoComplexity levelmedium
project_typeNoProject typegeneral
requirementsYesProject requirements

Implementation Reference

  • Complete registration of the 'mcp__gemini__create_project_tasks' tool, including input schema, description, and the full inline handler function that generates tasks using AI and persists to storage.
    this.registerTool( 'mcp__gemini__create_project_tasks', 'Create project tasks from requirements', { requirements: { type: 'string', description: 'Project requirements', required: true }, project_type: { type: 'string', description: 'Project type', default: 'general' }, complexity: { type: 'string', description: 'Complexity level', default: 'medium' } }, async (args) => { const { requirements, project_type = 'general', complexity = 'medium' } = args; validateString(requirements, 'requirements'); const prompt = `Break down these project requirements into specific, actionable tasks: ${requirements} Project Type: ${project_type} Complexity: ${complexity} Create a structured task list with: 1. Clear task descriptions 2. Priority levels (high/medium/low) 3. Estimated effort 4. Dependencies between tasks 5. Implementation order`; const taskBreakdown = await aiClient.call(prompt, 'main', { complexity }); // Save to storage const taskData = await storage.read('tasks'); const timestamp = new Date().toISOString(); taskData.last_requirements = requirements; taskData.last_breakdown = taskBreakdown; taskData.updated = timestamp; await storage.write('tasks', taskData); return `📋 **Project Tasks Created**\\n\\n${taskBreakdown}`; } );
  • The core handler function for 'mcp__gemini__create_project_tasks' that destructures args, validates input, constructs an AI prompt, calls aiClient to generate task breakdown, persists data to storage, and returns formatted response.
    async (args) => { const { requirements, project_type = 'general', complexity = 'medium' } = args; validateString(requirements, 'requirements'); const prompt = `Break down these project requirements into specific, actionable tasks: ${requirements} Project Type: ${project_type} Complexity: ${complexity} Create a structured task list with: 1. Clear task descriptions 2. Priority levels (high/medium/low) 3. Estimated effort 4. Dependencies between tasks 5. Implementation order`; const taskBreakdown = await aiClient.call(prompt, 'main', { complexity }); // Save to storage const taskData = await storage.read('tasks'); const timestamp = new Date().toISOString(); taskData.last_requirements = requirements; taskData.last_breakdown = taskBreakdown; taskData.updated = timestamp; await storage.write('tasks', taskData); return `📋 **Project Tasks Created**\\n\\n${taskBreakdown}`; }
  • Input schema parameters for the tool defining requirements (required string), project_type, and complexity.
    { requirements: { type: 'string', description: 'Project requirements', required: true }, project_type: { type: 'string', description: 'Project type', default: 'general' }, complexity: { type: 'string', description: 'Complexity level', default: 'medium' } },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/emmron/gemini-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server