requirements.txt2.75 kB
# Core MetaTrader5 and MCP dependencies
# Use environment markers to keep compatibility across Python versions
MetaTrader5>=5.0.5260
mcp>=1.14.1 # requires Python >=3.10
fastmcp>=2.12.3 # requires Python >=3.10
# Python standard library backports
typing-extensions>=4.15.0
# Additional useful packages for development
python-dotenv>=1.1.1
dateparser>=1.2.2
# pandas
pandas>=2.3.2; python_version >= "3.10"
pandas>=2.0.3; python_version < "3.10"
# pandas-ta (install classic fork from GitHub). Requires Git available on PATH.
# Use distribution name to match package metadata (pandas-ta-classic)
pandas-ta-classic @ git+https://github.com/xgboosted/pandas-ta-classic@main
# ARCH (heteroskedasticity models)
arch>=7.2.0; python_version >= "3.9"
arch>=6.3.0; python_version < "3.9"
python-dateutil>=2.9.0.post0
pytz>=2025.2
# SciPy (bounded to <1.16.0 to satisfy statsforecast<->scipy compatibility)
scipy>=1.15.3,<1.16.0; python_version >= "3.10"
scipy>=1.10.1,<1.16.0; python_version < "3.10"
# statsmodels
statsmodels>=0.14.5; python_version >= "3.9"
statsmodels>=0.14.0; python_version < "3.9"
# API server
fastapi>=0.117.1
uvicorn[standard]>=0.36.0; python_version >= "3.9"
uvicorn[standard]>=0.23.2; python_version < "3.9"
# Optional: classical/ML/DL forecasting frameworks (enabled to support all methods)
# statsforecast (classical, numba-accelerated)
statsforecast>=2.0.2
# mlforecast (tree/GBM over lags); LightGBM optional
mlforecast>=1.0.2
lightgbm>=4.6.0
# neuralforecast (deep learning; include torch extras). Not available on Python 3.12 due to ray wheels.
neuralforecast[torch]>=3.0.2; python_version < "3.12"
# Ensure torch/torchvision available (CPU wheels by default)
# For Python <3.12: constrained to satisfy neuralforecast (<=2.6.0)
torch>=2.0,<2.7; python_version < "3.12"
torchvision>=0.21.0,<0.22; python_version < "3.12"
# For Python >=3.12: neuralforecast is skipped; keep torch for Chronos/Accelerate
torch>=2.3.0; python_version >= "3.12"
torchvision>=0.17.0; python_version >= "3.12"
# Optional: foundation models (Transformers) — enabled for Chronos/TimesFM
transformers>=4.56.2
accelerate>=1.10.1
chronos-forecasting==1.5.3 # for Chronos-Bolt
timesfm>=2.0.0
# Optional: pattern search ANN and DTW backends
# hnswlib>=0.8.0
# tslearn>=0.6.3
# dtaidistance>=2.3.10
# Optional: dimensionality reduction methods / ML utilities
scikit-learn>=1.7.2; python_version >= "3.10"
scikit-learn>=1.4.2; python_version >= "3.9" and python_version < "3.10"
scikit-learn>=1.3.2; python_version < "3.9"
# umap-learn>=0.5.5
# pydiffmap>=0.2.0
# pykeops>=2.2.3 # optional acceleration for CNE graph (GPU)
# Optional: DREAMS-CNE (install from source)
# git+https://github.com/berenslab/DREAMS-CNE@tp