Skip to main content
Glama

MetaTrader5 MCP Server

by emerzon
README.md3.98 kB
# MetaTrader5 Forecast Methods Test Suite This directory contains comprehensive test tools for the MetaTrader5 forecasting functionality. ## Files ### `test_forecast_methods.py` The main comprehensive test suite for all forecasting methods. **Features:** - Tests all 11 available forecast methods - Clean output with no statsmodels warnings - Comprehensive performance analysis - Detailed JSON reports with timestamps - Category-based method grouping - Statistical analysis and trend detection **Usage:** ```bash # Basic usage (defaults: EURUSD, H1, 12 periods) python tests/test_forecast_methods.py # With specific parameters python tests/test_forecast_methods.py GBPUSD M30 8 python tests/test_forecast_methods.py USDJPY D1 5 # Arguments: # 1. symbol - Trading symbol (default: EURUSD) # 2. timeframe - MT5 timeframe (default: H1) # 3. horizon - Forecast periods (default: 12) ``` **Output:** - Console display of all test results - JSON file saved to `test_results/` directory - Performance categorization and analysis - Success rate assessment ## Test Results Directory Test results are automatically saved to the `test_results/` directory with timestamped filenames: ``` test_results/forecast_test_EURUSD_H1_20250901_130558.json ``` ## Method Categories The test suite organizes methods into four categories: ### Simple Baselines - `naive` - Repeat last observed value - `drift` - Linear drift extrapolation - `seasonal_naive` - Repeat seasonal patterns ### Exponential Smoothing - `ses` - Simple Exponential Smoothing - `holt` - Linear trend method - `holt_winters_add` - Additive seasonality - `holt_winters_mul` - Multiplicative seasonality ### Advanced Methods - `theta` - Hybrid trend/level method - `fourier_ols` - Fourier series regression ### ARIMA Family - `arima` - Non-seasonal ARIMA - `sarima` - Seasonal ARIMA ## Example Output ``` MetaTrader5 Forecast Methods Test Suite Symbol: EURUSD | Timeframe: H1 | Horizon: 6 periods ================================================================================ Testing 11 forecast methods... ================================================================================ [ 1/11] Testing naive [SUCCESS] Trend: FLAT, Mean: 1.170440 [ 2/11] Testing drift [SUCCESS] Trend: UP, Mean: 1.170615 [ 3/11] Testing seasonal_naive [SUCCESS] Trend: DOWN, Mean: 1.169165 ... ==================================================================================================== DETAILED FORECAST METHOD ANALYSIS ==================================================================================================== Total Successful Methods: 10 Total Forecast Points: 60 DATA PERIOD ANALYSIS: Average Lookback Period: 136 bars (training data) Forecast Period: 2025-09-01T21 to 2025-09-02T02 FORECAST VALUE ANALYSIS: Overall Price Range: 1.165970 - 1.170760 Overall Mean Price: 1.169494 Overall Price Std Dev: 0.001366 ... ====================================================================== TEST SUITE SUMMARY ====================================================================== Symbol: EURUSD Timeframe: H1 Training Data: ~136 bars (historical data used) Forecast Horizon: 6 periods Forecast Period: 2025-09-01T21 to 2025-09-02T02 Methods Tested: 11 Successful: 10 Failed: 1 Success Rate: 90.9% [EXCELLENT] Forecast system is working exceptionally well! ``` ## Performance Thresholds - **90%+**: Excellent - System working exceptionally well - **75-89%**: Very Good - Most methods working correctly - **50-74%**: Good - Majority of methods functional - **25-49%**: Moderate - Some methods need attention - **<25%**: Poor - Significant issues detected ## Notes - All statsmodels warnings are properly suppressed for clean output - Tests work with any valid MT5 symbol and timeframe - Confidence intervals are tested and reported - Results include trend analysis and volatility measures - JSON output preserves all test data for further analysis

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/emerzon/mt-data-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server