Skip to main content
Glama
egoughnour
by egoughnour

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault
OLLAMA_URLNoThe URL of the Ollama server where local inference is performed.http://localhost:11434
RLM_DATA_DIRYesThe directory where RLM stores contexts and results.

Capabilities

Features and capabilities supported by this server

CapabilityDetails
tools
{
  "listChanged": true
}
prompts
{
  "listChanged": false
}
resources
{
  "subscribe": false,
  "listChanged": false
}
experimental
{
  "tasks": {
    "list": {},
    "cancel": {},
    "requests": {
      "tools": {
        "call": {}
      },
      "prompts": {
        "get": {}
      },
      "resources": {
        "read": {}
      }
    }
  }
}

Tools

Functions exposed to the LLM to take actions

NameDescription
rlm_system_check

Check if system meets requirements for Ollama with gemma3:12b.

Verifies: macOS, Apple Silicon (M1/M2/M3/M4), 16GB+ RAM, Homebrew installed. Use before attempting Ollama setup.

rlm_setup_ollama

Install Ollama via Homebrew (macOS).

Requires Homebrew pre-installed. Uses 'brew install' and 'brew services'. PROS: Auto-updates, pre-built binaries, managed service. CONS: Requires Homebrew, may prompt for sudo on first Homebrew install.

Args: install: Install Ollama via Homebrew (requires Homebrew) start_service: Start Ollama as a background service via brew services pull_model: Pull the default model (gemma3:12b) model: Model to pull (default: gemma3:12b). Use gemma3:4b or gemma3:1b for lower RAM systems.

rlm_setup_ollama_direct

Install Ollama via direct download (macOS).

Downloads from ollama.com to ~/Applications. PROS: No Homebrew needed, no sudo required, fully headless, works on locked-down machines. CONS: Manual PATH setup, no auto-updates, service runs as foreground process.

Args: install: Download and install Ollama to ~/Applications (no sudo needed) start_service: Start Ollama server (ollama serve) in background pull_model: Pull the default model (gemma3:12b) model: Model to pull (default: gemma3:12b). Use gemma3:4b or gemma3:1b for lower RAM systems.

rlm_ollama_status

Check Ollama server status and available models.

Returns whether Ollama is running, list of available models, and if the default model (gemma3:12b) is available. Use this to determine if free local inference is available.

Args: force_refresh: Force refresh the cached status (default: false)

rlm_load_context

Load a large context as an external variable.

Returns metadata without the content itself.

Args: name: Identifier for this context content: The full context content

rlm_inspect_context

Inspect a loaded context - get structure info without loading full content into prompt.

Args: name: Context identifier preview_chars: Number of chars to preview (default 500)

rlm_chunk_context

Chunk a loaded context by strategy. Returns chunk metadata, not full content.

Args: name: Context identifier strategy: Chunking strategy - 'lines', 'chars', or 'paragraphs' size: Chunk size (lines/chars depending on strategy)

rlm_get_chunk

Get a specific chunk by index. Use after chunking to retrieve individual pieces.

Args: name: Context identifier chunk_index: Index of chunk to retrieve

rlm_filter_context

Filter context using regex/string operations. Creates a new filtered context.

Args: name: Source context identifier output_name: Name for filtered context pattern: Regex pattern to match mode: 'keep' or 'remove' matching lines

rlm_sub_query

Make a sub-LLM call on a chunk or filtered context. Core of recursive pattern.

Args: query: Question/instruction for the sub-call context_name: Context identifier to query against chunk_index: Optional: specific chunk index provider: LLM provider - 'auto', 'ollama', or 'claude-sdk'. 'auto' prefers Ollama if available (free local inference) model: Model to use (provider-specific defaults apply)

rlm_store_result

Store a sub-call result for later aggregation.

Args: name: Result set identifier result: Result content to store metadata: Optional metadata about this result

rlm_get_results

Retrieve stored results for aggregation.

Args: name: Result set identifier

rlm_list_contexts

List all loaded contexts and their metadata.

rlm_sub_query_batch

Process multiple chunks in parallel. Respects concurrency limit to manage system resources.

Args: query: Question/instruction for each sub-call context_name: Context identifier chunk_indices: List of chunk indices to process provider: LLM provider - 'auto', 'ollama', or 'claude-sdk' model: Model to use (provider-specific defaults apply) concurrency: Max parallel requests (default 4, max 8)

rlm_auto_analyze

Automatically detect content type and analyze with optimal chunking strategy.

One-step analysis for common tasks.

Args: name: Context identifier content: The content to analyze goal: Analysis goal: 'summarize', 'find_bugs', 'extract_structure', 'security_audit', or 'answer:' provider: LLM provider - 'auto' prefers Ollama if available concurrency: Max parallel requests (default 4, max 8)

rlm_firewall_status

Check the status of the code execution firewall.

Returns information about whether the firewall is enabled, the Ollama endpoint being used, and whether dangerous code patterns will be blocked.

The firewall is auto-enabled when code-firewall-mcp is installed: pip install massive-context-mcp[firewall]

Returns: { "enabled": bool, "package_installed": bool, "ollama_url": str, "embedding_model": str, "similarity_threshold": float, "ollama_reachable": bool, }

rlm_exec

Execute Python code against a loaded context in a sandboxed subprocess.

Set result variable for output.

Args: code: Python code to execute. User sets result variable for output. context_name: Name of previously loaded context timeout: Max execution time in seconds (default 30)

Security: When RLM_FIREWALL_ENABLED=1, code is checked against known dangerous patterns before execution. Blocked code returns an error instead of executing.

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/egoughnour/massive-context-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server