Skip to main content
Glama

YouTube Knowledge MCP

by efikuta
README.md3.29 kB
## YouTube Knowledge MCP Production-ready Model Context Protocol (MCP) server that turns YouTube into a queryable knowledge source. Search, fetch details, analyze transcripts/comments, and power AI workflows with optional LLMs. Built for Claude Desktop and other MCP clients. ### Why this is special - **Fast + quota-aware** YouTube API access with caching - **Batteries-included tools** for search, details, trending, channels - **Optional AI superpowers** (OpenAI/Anthropic) for summaries, topics, chapters, learning paths, comment intents, and knowledge graphs - **Zero noise**: minimal config, clear logs, safe defaults ### Requirements - Node.js 18+ - YouTube Data API v3 key - Optional: OpenAI and/or Anthropic API keys for AI tools ### Install ```bash npm install ``` ### Configure environment Create `.env` (or set variables in your MCP client config). You can start from the example: ```bash cp env.example .env ``` Then set values in `.env`: ```env # Required YOUTUBE_API_KEY=your_youtube_api_key # Optional AI providers (enables AI tools: analyze_video_content, generate_learning_path, analyze_comment_intents, simplify_video_transcript, generate_video_chapters, generate_knowledge_graph) OPENAI_API_KEY=your_openai_api_key ANTHROPIC_API_KEY=your_anthropic_api_key # Optional tuning LOG_LEVEL=info MAX_DAILY_QUOTA=8000 REDIS_URL= # e.g. redis://localhost:6379 REDIS_HOST= REDIS_PORT= REDIS_PASSWORD= ``` An `env.example` with placeholders is provided. Do not commit your `.env`. ### Build and run ```bash # Development (watch) npm run dev # Production npm run build npm start ``` ### Connect to Claude Desktop (example) Add to your Claude Desktop configuration with absolute paths: ```json { "mcpServers": { "youtube-knowledge": { "command": "node", "args": ["/absolute/path/to/youtube-knowledge-mcp/build/index.js"], "env": { "YOUTUBE_API_KEY": "your_youtube_api_key", "OPENAI_API_KEY": "optional_openai", "ANTHROPIC_API_KEY": "optional_anthropic", "LOG_LEVEL": "info" } } } } ``` Restart Claude Desktop after editing the config. ### Available tools - `youtube_search` — Search videos with filters - `get_video_details` — Video metadata, transcript (best-effort), comments - `get_trending_videos` — Most popular by region/category - `search_channels` — Channel search with optional stats - `analyze_video_content` — AI topics/sentiment/questions/summary/keywords - `generate_learning_path` — AI learning path for a topic - `analyze_comment_intents` — Classify viewer intents - `simplify_video_transcript` — ELI5-style simplification - `generate_video_chapters` — AI chapters with timestamps - `generate_knowledge_graph` — Cross-video concept graph Note: AI tools are available only if an AI provider key is configured. ### Quotas and safety - Enforces daily quota (default 8000 units) and cost-aware AI usage - Logs to stderr (does not break MCP stdio) - Caching reduces API and token spend; optional Redis supported ### Troubleshooting - Missing key: ensure `YOUTUBE_API_KEY` is set - Quota exceeded: lower usage, enable caching, or raise `MAX_DAILY_QUOTA` - Claude cannot connect: verify absolute path to `build/index.js` and restart ### License MIT By Efi Kuta

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/efikuta/youtube-knowledge-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server