Skip to main content
Glama
by efikuta

YouTube Knowledge MCP

Production-ready Model Context Protocol (MCP) server that turns YouTube into a queryable knowledge source. Search, fetch details, analyze transcripts/comments, and power AI workflows with optional LLMs. Built for Claude Desktop and other MCP clients.

Why this is special

  • Fast + quota-aware YouTube API access with caching

  • Batteries-included tools for search, details, trending, channels

  • Optional AI superpowers (OpenAI/Anthropic) for summaries, topics, chapters, learning paths, comment intents, and knowledge graphs

  • Zero noise: minimal config, clear logs, safe defaults

Requirements

  • Node.js 18+

  • YouTube Data API v3 key

  • Optional: OpenAI and/or Anthropic API keys for AI tools

Install

npm install

Configure environment

Create .env (or set variables in your MCP client config). You can start from the example:

cp env.example .env

Then set values in .env:

# Required YOUTUBE_API_KEY=your_youtube_api_key # Optional AI providers (enables AI tools: analyze_video_content, generate_learning_path, analyze_comment_intents, simplify_video_transcript, generate_video_chapters, generate_knowledge_graph) OPENAI_API_KEY=your_openai_api_key ANTHROPIC_API_KEY=your_anthropic_api_key # Optional tuning LOG_LEVEL=info MAX_DAILY_QUOTA=8000 REDIS_URL= # e.g. redis://localhost:6379 REDIS_HOST= REDIS_PORT= REDIS_PASSWORD=

An env.example with placeholders is provided. Do not commit your .env.

Build and run

# Development (watch) npm run dev # Production npm run build npm start

Connect to Claude Desktop (example)

Add to your Claude Desktop configuration with absolute paths:

{ "mcpServers": { "youtube-knowledge": { "command": "node", "args": ["/absolute/path/to/youtube-knowledge-mcp/build/index.js"], "env": { "YOUTUBE_API_KEY": "your_youtube_api_key", "OPENAI_API_KEY": "optional_openai", "ANTHROPIC_API_KEY": "optional_anthropic", "LOG_LEVEL": "info" } } } }

Restart Claude Desktop after editing the config.

Available tools

  • youtube_search — Search videos with filters

  • get_video_details — Video metadata, transcript (best-effort), comments

  • get_trending_videos — Most popular by region/category

  • search_channels — Channel search with optional stats

  • analyze_video_content — AI topics/sentiment/questions/summary/keywords

  • generate_learning_path — AI learning path for a topic

  • analyze_comment_intents — Classify viewer intents

  • simplify_video_transcript — ELI5-style simplification

  • generate_video_chapters — AI chapters with timestamps

  • generate_knowledge_graph — Cross-video concept graph

Note: AI tools are available only if an AI provider key is configured.

Quotas and safety

  • Enforces daily quota (default 8000 units) and cost-aware AI usage

  • Logs to stderr (does not break MCP stdio)

  • Caching reduces API and token spend; optional Redis supported

Troubleshooting

  • Missing key: ensure YOUTUBE_API_KEY is set

  • Quota exceeded: lower usage, enable caching, or raise MAX_DAILY_QUOTA

  • Claude cannot connect: verify absolute path to build/index.js and restart

License

MIT By Efi Kuta

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/efikuta/youtube-knowledge-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server