Skip to main content
Glama

Revenue Intelligence MCP Server

by drew6050
example_usage.py3.08 kB
#!/usr/bin/env python3 """ Example usage of the Revenue Intelligence MCP Server. Demonstrates scoring, churn detection, and conversion analysis. """ from scoring import score_lead, detect_churn_risk, calculate_conversion_probability from data_store import get_account, get_lead, store_prediction_log from config import MODEL_VERSION print("=" * 70) print("Revenue Intelligence MCP Server - Example Usage") print("=" * 70) print() # Example 1: Score a lead print("1. LEAD SCORING") print("-" * 70) lead = get_lead("lead_003") # Enterprise Solutions Corp print(f"Scoring lead: {lead['company']}") print(f" Industry: {lead['industry']}") print(f" Employees: {lead['employee_count']}") print(f" Signals: {lead['signals']}") print() result = score_lead( company_name=lead["company"], signals=lead["signals"], industry=lead["industry"], employee_count=lead["employee_count"] ) print(f"RESULT:") print(f" Score: {result['score']}/100") print(f" Tier: {result['tier'].upper()}") print(f" Explanation: {result['explanation']}") print() # Log the prediction log = store_prediction_log( prediction_type="lead_score", input_data={"company_name": lead["company"]}, prediction_result=result, model_version=MODEL_VERSION ) print(f" Logged: {log['log_id']}") print() # Example 2: Detect churn risk print("2. CHURN RISK DETECTION") print("-" * 70) account = get_account("acc_006") # EduLearn Platform (at-risk) print(f"Analyzing account: {account['company']}") print(f" Plan: {account['plan']}") print(f" Status: {account['status']}") print(f" MRR: ${account['mrr']}") print(f" Usage signals: {account['usage_signals']}") print() churn_result = detect_churn_risk(account) print(f"RESULT:") print(f" Risk Score: {churn_result['risk_score']}/100") print(f" Risk Tier: {churn_result['risk_tier'].upper()}") print(f" Declining signals:") for signal in churn_result['declining_signals']: print(f" - {signal}") print(f" Suggested interventions:") for intervention in churn_result['suggested_interventions']: print(f" - {intervention}") print() # Example 3: Conversion probability print("3. CONVERSION PROBABILITY") print("-" * 70) trial_account = get_account("acc_009") # CloudScale Ventures (trial) print(f"Analyzing trial: {trial_account['company']}") print(f" Plan: {trial_account['plan']}") print(f" Created: {trial_account['created_date']}") print(f" Usage signals: {trial_account['usage_signals']}") print() conversion_result = calculate_conversion_probability(trial_account) print(f"RESULT:") print(f" Conversion Probability: {conversion_result['conversion_probability']:.1%}") print(f" Tier: {conversion_result['probability_tier'].upper()}") print(f" Key engagement signals:") for signal in conversion_result['key_engagement_signals']: print(f" - {signal}") print(f" Recommended actions:") for action in conversion_result['recommended_actions']: print(f" - {action}") print() print("=" * 70) print("All examples completed successfully!") print(f"Model version: {MODEL_VERSION}") print("=" * 70)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/drew6050/revenue-intel-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server