Skip to main content
Glama

MCP Memory Service

#!/bin/bash # Generate personalized CLAUDE.md with memory context for local network distribution # Usage: ./generate_personalized_claude_md.sh [target_machine_ip] [output_file] TARGET_IP="${1:-10.0.1.30}" OUTPUT_FILE="${2:-CLAUDE_PERSONALIZED.md}" MCP_ENDPOINT="https://${TARGET_IP}:8443/mcp" API_KEY="test-key-123" echo "Generating personalized CLAUDE.md for network distribution..." echo "Target: $TARGET_IP" echo "Output: $OUTPUT_FILE" # Create the personalized CLAUDE.md with embedded memory context cat > "$OUTPUT_FILE" << 'EOF' # CLAUDE.md - Personalized with Memory Context This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. **This version includes pre-loaded memory context from your local MCP Memory Service.** ## Memory Context Integration Your local memory service contains essential project context. Here's the prompt to retrieve it: ``` Load MCP Memory Service context for this project. Retrieve all memories tagged with 'claude-code-reference' and 'distributable-reference' from the following endpoint and incorporate the knowledge into your understanding of this codebase: Memory Service: https://TARGET_IP:8443/mcp Authorization: Bearer test-key-123 Use this command to fetch context: curl -k -s -X POST https://TARGET_IP:8443/mcp \ -H "Content-Type: application/json" \ -H "Authorization: Bearer test-key-123" \ -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "retrieve_memory", "arguments": {"query": "claude-code-reference distributable-reference", "limit": 20}}}' \ | jq -r '.result.content[0].text' This will provide you with: - Project structure and architecture details - Key commands for development, testing, and deployment - Environment variables and configuration options - Recent changes including v5.0.2 ONNX implementation - Issue management patterns and current status - Testing practices and platform-specific optimizations - Remote service deployment information After loading this context, you'll have comprehensive knowledge of the MCP Memory Service project without needing to discover the codebase structure through file reading. ``` ## Quick Memory Retrieval Commands If memory context fails to load automatically, use these commands: ### Get All Project Context ```bash curl -k -s -X POST https://TARGET_IP:8443/mcp \ -H "Content-Type: application/json" \ -H "Authorization: Bearer test-key-123" \ -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "retrieve_memory", "arguments": {"query": "claude-code-reference", "limit": 20}}}' \ | jq -r '.result.content[0].text' ``` ### Check Memory Service Health ```bash curl -k -s -X POST https://TARGET_IP:8443/mcp \ -H "Content-Type: application/json" \ -H "Authorization: Bearer test-key-123" \ -d '{"jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": {"name": "check_database_health", "arguments": {}}}' \ | jq -r '.result.content[0].text' ``` ## Memory Categories Available - **Project Structure**: Server architecture, file locations, component relationships - **Key Commands**: Installation, testing, debugging, deployment commands - **Environment Variables**: Configuration options and platform-specific settings - **Recent Changes**: Version history, resolved issues, breaking changes - **Testing Practices**: Framework preferences, test patterns, validation steps - **Current Status**: Active issues, recent work, development context EOF # Replace TARGET_IP placeholder with actual IP sed -i "s/TARGET_IP/$TARGET_IP/g" "$OUTPUT_FILE" # Append the original CLAUDE.md content (without the memory section) echo "" >> "$OUTPUT_FILE" echo "## Original Project Documentation" >> "$OUTPUT_FILE" echo "" >> "$OUTPUT_FILE" # Extract content from original CLAUDE.md starting after memory section awk '/^## Overview/{print; getline; while(getline > 0) print}' CLAUDE.md >> "$OUTPUT_FILE" echo "✅ Personalized CLAUDE.md generated: $OUTPUT_FILE" echo "" echo "Distribution instructions:" echo "1. Copy $OUTPUT_FILE to target machines as CLAUDE.md" echo "2. Ensure target machines can access https://$TARGET_IP:8443" echo "3. Claude Code will automatically use memory context on those machines" echo "" echo "Network test command:" echo "curl -k -s https://$TARGET_IP:8443/api/health"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server