Skip to main content
Glama

MCP Memory Service

install.py78.6 kB
#!/usr/bin/env python3 """ Installation script for MCP Memory Service with cross-platform compatibility. This script guides users through the installation process with the appropriate dependencies for their platform. """ import os import sys import platform import subprocess import argparse import shutil from pathlib import Path import re def is_python_version_at_least(major, minor): """Check if current Python version is at least the specified version. Args: major: Major version number minor: Minor version number Returns: bool: True if current Python version >= specified version """ return sys.version_info >= (major, minor) def get_python_version_string(): """Get Python version as a string (e.g., '3.12'). Returns: str: Python version string """ return f"{sys.version_info.major}.{sys.version_info.minor}" def get_package_version(): """Get the current package version from pyproject.toml. Returns: str: The version string from pyproject.toml or fallback version """ fallback_version = "7.2.0" try: # Get path to pyproject.toml relative to this script pyproject_path = Path(__file__).parent.parent.parent / "pyproject.toml" if not pyproject_path.exists(): print_warning(f"pyproject.toml not found at {pyproject_path}, using fallback version {fallback_version}") return fallback_version with open(pyproject_path, "r", encoding="utf-8") as f: content = f.read() # Extract version using regex - matches standard pyproject.toml format version_pattern = r'^version\s*=\s*["\']([^"\'\n]+)["\']' version_match = re.search(version_pattern, content, re.MULTILINE) if version_match: version = version_match.group(1).strip() if version: # Ensure non-empty version return version else: print_warning("Empty version found in pyproject.toml, using fallback") return fallback_version else: print_warning("Version not found in pyproject.toml, using fallback") return fallback_version except (OSError, IOError) as e: print_warning(f"Failed to read pyproject.toml: {e}, using fallback version {fallback_version}") return fallback_version except Exception as e: print_warning(f"Unexpected error parsing version: {e}, using fallback version {fallback_version}") return fallback_version def print_header(text): """Print a formatted header.""" print("\n" + "=" * 80) print(f" {text}") print("=" * 80) def print_step(step, text): """Print a formatted step.""" print(f"\n[{step}] {text}") def print_info(text): """Print formatted info text.""" print(f" → {text}") def print_error(text): """Print formatted error text.""" print(f" ❌ ERROR: {text}") def print_success(text): """Print formatted success text.""" print(f" ✅ {text}") def print_warning(text): """Print formatted warning text.""" print(f" ⚠️ {text}") def run_command_safe(cmd, success_msg=None, error_msg=None, silent=False, timeout=None, fallback_in_venv=False): """ Run a subprocess command with standardized error handling. Args: cmd: Command to run (list of strings) success_msg: Message to print on success error_msg: Custom error message silent: If True, suppress stdout/stderr timeout: Command timeout in seconds fallback_in_venv: If True and command fails, warn instead of error when in virtual environment Returns: tuple: (success: bool, result: subprocess.CompletedProcess or None) """ # Validate command input if not cmd or not isinstance(cmd, (list, tuple)): print_error("Invalid command: must be a non-empty list or tuple") return False, None if not all(isinstance(arg, (str, int, float)) for arg in cmd if arg is not None): print_error("Invalid command arguments: all arguments must be strings, numbers, or None") return False, None # Filter out None values and convert to strings cmd_clean = [str(arg) for arg in cmd if arg is not None] if not cmd_clean: print_error("Command is empty after filtering") return False, None try: kwargs = {'capture_output': False, 'text': True} if silent: kwargs.update({'stdout': subprocess.DEVNULL, 'stderr': subprocess.DEVNULL}) if timeout: kwargs['timeout'] = timeout result = subprocess.run(cmd_clean, check=True, **kwargs) if success_msg: print_success(success_msg) return True, result except subprocess.TimeoutExpired as e: if error_msg: timeout_msg = error_msg elif hasattr(e, 'timeout') and e.timeout: timeout_msg = f"Command timed out after {e.timeout}s" else: timeout_msg = "Command timed out" print_error(timeout_msg) return False, None except subprocess.CalledProcessError as e: if fallback_in_venv: in_venv = sys.prefix != sys.base_prefix if in_venv: fallback_msg = error_msg or "Command failed, but you're in a virtual environment. If you're using an alternative package manager, this may be normal." print_warning(fallback_msg) print_warning("Note: Installation may not have succeeded. Please verify manually if needed.") return True, None # Proceed anyway in venv with warning if error_msg: print_error(error_msg) else: # Safe command formatting for error messages cmd_str = ' '.join(f'"{arg}"' if ' ' in str(arg) else str(arg) for arg in cmd_clean) print_error(f"Command failed (exit code {e.returncode}): {cmd_str}") return False, None except FileNotFoundError: if error_msg: print_error(error_msg) else: print_error(f"Command not found: {cmd_clean[0]}") return False, None except PermissionError: permission_msg = error_msg or f"Permission denied executing: {cmd_clean[0]}" print_error(permission_msg) return False, None def install_package_safe(package, success_msg=None, error_msg=None, fallback_in_venv=True): """ Install a Python package with standardized error handling. Args: package: Package name or requirement string success_msg: Message to print on success error_msg: Custom error message fallback_in_venv: If True, warn instead of error when in virtual environment Returns: bool: True if installation succeeded OR if fallback was applied (see warning messages) """ cmd = [sys.executable, '-m', 'pip', 'install', package] default_success = success_msg or f"{package} installed successfully" default_error = error_msg or f"Failed to install {package}" if fallback_in_venv: default_error += ". If you're using an alternative package manager like uv, please install manually." success, _ = run_command_safe( cmd, success_msg=default_success, error_msg=default_error, silent=True, fallback_in_venv=fallback_in_venv ) return success def detect_system(): """Detect the system architecture and platform.""" system = platform.system().lower() machine = platform.machine().lower() python_version = f"{sys.version_info.major}.{sys.version_info.minor}" is_windows = system == "windows" is_macos = system == "darwin" is_linux = system == "linux" is_arm = machine in ("arm64", "aarch64") is_x86 = machine in ("x86_64", "amd64", "x64") print_info(f"System: {platform.system()} {platform.release()}") print_info(f"Architecture: {machine}") print_info(f"Python: {python_version}") # Check for virtual environment in_venv = sys.prefix != sys.base_prefix if not in_venv: print_warning("Not running in a virtual environment. It's recommended to install in a virtual environment.") else: print_info(f"Virtual environment: {sys.prefix}") # Check for Homebrew PyTorch installation has_homebrew_pytorch = False homebrew_pytorch_version = None if is_macos: try: # Check if pytorch is installed via brew result = subprocess.run( ['brew', 'list', 'pytorch', '--version'], capture_output=True, text=True ) if result.returncode == 0: has_homebrew_pytorch = True # Extract version from output version_line = result.stdout.strip() homebrew_pytorch_version = version_line.split()[1] if len(version_line.split()) > 1 else "Unknown" print_info(f"Detected Homebrew PyTorch installation: {homebrew_pytorch_version}") except (subprocess.SubprocessError, FileNotFoundError): pass return { "system": system, "machine": machine, "python_version": python_version, "is_windows": is_windows, "is_macos": is_macos, "is_linux": is_linux, "is_arm": is_arm, "is_x86": is_x86, "in_venv": in_venv, "has_homebrew_pytorch": has_homebrew_pytorch, "homebrew_pytorch_version": homebrew_pytorch_version } def detect_gpu(): """Detect GPU and acceleration capabilities.""" system_info = detect_system() # Check for CUDA has_cuda = False cuda_version = None if system_info["is_windows"]: cuda_path = os.environ.get('CUDA_PATH') if cuda_path and os.path.exists(cuda_path): has_cuda = True try: # Try to get CUDA version nvcc_output = subprocess.check_output([os.path.join(cuda_path, 'bin', 'nvcc'), '--version'], stderr=subprocess.STDOUT, universal_newlines=True) for line in nvcc_output.split('\n'): if 'release' in line: cuda_version = line.split('release')[-1].strip().split(',')[0].strip() break except (subprocess.SubprocessError, FileNotFoundError): pass elif system_info["is_linux"]: cuda_paths = ['/usr/local/cuda', os.environ.get('CUDA_HOME')] for path in cuda_paths: if path and os.path.exists(path): has_cuda = True try: # Try to get CUDA version nvcc_output = subprocess.check_output([os.path.join(path, 'bin', 'nvcc'), '--version'], stderr=subprocess.STDOUT, universal_newlines=True) for line in nvcc_output.split('\n'): if 'release' in line: cuda_version = line.split('release')[-1].strip().split(',')[0].strip() break except (subprocess.SubprocessError, FileNotFoundError): pass break # Check for ROCm (AMD) has_rocm = False rocm_version = None if system_info["is_linux"]: rocm_paths = ['/opt/rocm', os.environ.get('ROCM_HOME')] for path in rocm_paths: if path and os.path.exists(path): has_rocm = True try: # Try to get ROCm version with open(os.path.join(path, 'bin', '.rocmversion'), 'r') as f: rocm_version = f.read().strip() except (FileNotFoundError, IOError): try: rocm_output = subprocess.check_output(['rocminfo'], stderr=subprocess.STDOUT, universal_newlines=True) for line in rocm_output.split('\n'): if 'Version' in line: rocm_version = line.split(':')[-1].strip() break except (subprocess.SubprocessError, FileNotFoundError): pass break # Check for MPS (Apple Silicon) has_mps = False if system_info["is_macos"] and system_info["is_arm"]: try: # Check if Metal is supported result = subprocess.run( ['system_profiler', 'SPDisplaysDataType'], capture_output=True, text=True ) has_mps = 'Metal' in result.stdout except (subprocess.SubprocessError, FileNotFoundError): pass # Check for DirectML (Windows) has_directml = False if system_info["is_windows"]: try: # Check if DirectML package is installed import pkg_resources pkg_resources.get_distribution('torch-directml') has_directml = True except (ImportError, pkg_resources.DistributionNotFound): # Check if DirectML is available on the system try: import ctypes ctypes.WinDLL('DirectML.dll') has_directml = True except (ImportError, OSError): pass # Print GPU information if has_cuda: print_info(f"CUDA detected: {cuda_version or 'Unknown version'}") if has_rocm: print_info(f"ROCm detected: {rocm_version or 'Unknown version'}") if has_mps: print_info("Apple Metal Performance Shaders (MPS) detected") if has_directml: print_info("DirectML detected") if not (has_cuda or has_rocm or has_mps or has_directml): print_info("No GPU acceleration detected, will use CPU-only mode") return { "has_cuda": has_cuda, "cuda_version": cuda_version, "has_rocm": has_rocm, "rocm_version": rocm_version, "has_mps": has_mps, "has_directml": has_directml } def check_dependencies(): """Check for required dependencies. Note on package managers: - Traditional virtual environments (venv, virtualenv) include pip by default - Alternative package managers like uv may not include pip or may manage packages differently - We attempt multiple detection methods for pip and only fail if: a) We're not in a virtual environment, or b) We can't detect pip AND can't install dependencies We proceed with installation even if pip isn't detected when in a virtual environment, assuming an alternative package manager (like uv) is handling dependencies. Returns: bool: True if all dependencies are met, False otherwise. """ print_step("2", "Checking dependencies") # Check for pip pip_installed = False # Try subprocess check first success, _ = run_command_safe( [sys.executable, '-m', 'pip', '--version'], success_msg="pip is installed", silent=True, fallback_in_venv=True ) if success: pip_installed = True else: # Fallback to import check try: import pip pip_installed = True print_info(f"pip is installed: {pip.__version__}") except ImportError: # Check if we're in a virtual environment in_venv = sys.prefix != sys.base_prefix if in_venv: print_warning("pip could not be detected, but you're in a virtual environment. " "If you're using uv or another alternative package manager, this is normal. " "Continuing installation...") pip_installed = True # Proceed anyway else: print_error("pip is not installed. Please install pip first.") return False # Check for setuptools try: import setuptools print_info(f"setuptools is installed: {setuptools.__version__}") except ImportError: print_warning("setuptools is not installed. Will attempt to install it.") # If pip is available, use it to install setuptools if pip_installed: success = install_package_safe("setuptools") if not success: return False else: # Should be unreachable since pip_installed would only be False if we returned earlier print_error("Cannot install setuptools without pip. Please install setuptools manually.") return False # Check for wheel try: import wheel print_info(f"wheel is installed: {wheel.__version__}") except ImportError: print_warning("wheel is not installed. Will attempt to install it.") # If pip is available, use it to install wheel if pip_installed: success = install_package_safe("wheel") if not success: return False else: # Should be unreachable since pip_installed would only be False if we returned earlier print_error("Cannot install wheel without pip. Please install wheel manually.") return False return True def install_pytorch_platform_specific(system_info, gpu_info): """Install PyTorch with platform-specific configurations.""" if system_info["is_windows"]: return install_pytorch_windows(gpu_info) elif system_info["is_macos"] and system_info["is_x86"]: return install_pytorch_macos_intel() else: # For other platforms, let the regular installer handle it return True def install_pytorch_macos_intel(): """Install PyTorch specifically for macOS with Intel CPUs.""" print_step("3a", "Installing PyTorch for macOS Intel CPU") # Use the versions known to work well on macOS Intel and with Python 3.13+ try: # For Python 3.13+, we need newer PyTorch versions python_version = sys.version_info if python_version >= (3, 13): # For Python 3.13+, try to install latest compatible version print_info(f"Installing PyTorch for macOS Intel (Python {python_version.major}.{python_version.minor})...") print_info("Attempting to install latest PyTorch compatible with Python 3.13...") # Try to install without version specifiers to get latest compatible version cmd = [ sys.executable, '-m', 'pip', 'install', "torch", "torchvision", "torchaudio" ] success, _ = run_command_safe( cmd, success_msg="Latest PyTorch installed successfully", silent=False ) if success: st_version = "3.0.0" # Newer sentence-transformers for newer PyTorch else: print_warning("Failed to install latest PyTorch, trying fallback version...") # Fallback to a specific version torch_version = "2.1.0" torch_vision_version = "0.16.0" torch_audio_version = "2.1.0" st_version = "3.0.0" print_info(f"Trying fallback to PyTorch {torch_version}...") cmd = [ sys.executable, '-m', 'pip', 'install', f"torch=={torch_version}", f"torchvision=={torch_vision_version}", f"torchaudio=={torch_audio_version}" ] success, _ = run_command_safe( cmd, success_msg=f"PyTorch {torch_version} installed successfully", error_msg="Failed to install PyTorch fallback version", silent=False ) if not success: return False else: # Use traditional versions for older Python torch_version = "1.13.1" torch_vision_version = "0.14.1" torch_audio_version = "0.13.1" st_version = "2.2.2" print_info(f"Installing PyTorch {torch_version} for macOS Intel (Python {python_version.major}.{python_version.minor})...") # Install PyTorch first with compatible version packages = [f"torch=={torch_version}", f"torchvision=={torch_vision_version}", f"torchaudio=={torch_audio_version}"] success, _ = run_command_safe( [sys.executable, '-m', 'pip', 'install'] + packages, success_msg=f"PyTorch {torch_version} installed successfully" ) if not success: raise RuntimeError(f"Failed to install PyTorch {torch_version}") # Install a compatible version of sentence-transformers print_info(f"Installing sentence-transformers {st_version}...") success, _ = run_command_safe( [sys.executable, '-m', 'pip', 'install', f"sentence-transformers=={st_version}"], success_msg=f"sentence-transformers {st_version} installed successfully" ) if not success: raise RuntimeError(f"Failed to install sentence-transformers {st_version}") print_success(f"PyTorch {torch_version} and sentence-transformers {st_version} installed successfully for macOS Intel") return True except RuntimeError as e: print_error(f"Failed to install PyTorch for macOS Intel: {e}") # Provide fallback instructions if python_version >= (3, 13): print_warning("You may need to manually install compatible versions for Python 3.13+ on Intel macOS:") print_info("pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0") print_info("pip install sentence-transformers==3.0.0") else: print_warning("You may need to manually install compatible versions for Intel macOS:") print_info("pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1") print_info("pip install sentence-transformers==2.2.2") return False def install_pytorch_windows(gpu_info): """Install PyTorch on Windows using the appropriate index URL.""" print_step("3a", "Installing PyTorch for Windows") # Determine the appropriate PyTorch index URL based on GPU if gpu_info["has_cuda"]: # Get CUDA version and determine appropriate index URL cuda_version = gpu_info.get("cuda_version", "") # Extract major version from CUDA version string cuda_major = None if cuda_version: # Try to extract the major version (e.g., "11.8" -> "11") try: cuda_major = cuda_version.split('.')[0] except (IndexError, AttributeError): pass # Default to cu118 if we couldn't determine the version or it's not a common one if cuda_major == "12": cuda_suffix = "cu121" # CUDA 12.x print_info(f"Detected CUDA {cuda_version}, using cu121 channel") elif cuda_major == "11": cuda_suffix = "cu118" # CUDA 11.x print_info(f"Detected CUDA {cuda_version}, using cu118 channel") elif cuda_major == "10": cuda_suffix = "cu102" # CUDA 10.x print_info(f"Detected CUDA {cuda_version}, using cu102 channel") else: # Default to cu118 as a safe choice for newer NVIDIA GPUs cuda_suffix = "cu118" print_info(f"Using default cu118 channel for CUDA {cuda_version}") index_url = f"https://download.pytorch.org/whl/{cuda_suffix}" else: # CPU-only version index_url = "https://download.pytorch.org/whl/cpu" print_info("Using CPU-only PyTorch for Windows") # Install PyTorch with the appropriate index URL try: # Use a stable version that's known to have Windows wheels torch_version = "2.1.0" # This version has Windows wheels available cmd = [ sys.executable, '-m', 'pip', 'install', f"torch=={torch_version}", f"torchvision=={torch_version}", f"torchaudio=={torch_version}", f"--index-url={index_url}" ] success, _ = run_command_safe( cmd, success_msg="PyTorch installed successfully for Windows", error_msg="Failed to install PyTorch for Windows", silent=False ) if not success: return False # Check if DirectML is needed if gpu_info["has_directml"]: success = install_package_safe( "torch-directml>=0.2.0", success_msg="torch-directml installed successfully for DirectML support", error_msg="Failed to install torch-directml" ) if not success: print_warning("DirectML support may not be available") print_success("PyTorch installed successfully for Windows") return True except RuntimeError as e: print_error(f"Failed to install PyTorch for Windows: {e}") print_warning("You may need to manually install PyTorch using instructions from https://pytorch.org/get-started/locally/") return False def detect_storage_backend_compatibility(system_info, gpu_info): """Detect which storage backends are compatible with the current environment.""" print_step("3a", "Analyzing storage backend compatibility") compatibility = { "cloudflare": {"supported": True, "issues": [], "recommendation": "production"}, "sqlite_vec": {"supported": True, "issues": [], "recommendation": "development"}, "chromadb": {"supported": True, "issues": [], "recommendation": "team"} } # Check ChromaDB compatibility issues chromadb_issues = [] # macOS Intel compatibility issues if system_info["is_macos"] and system_info["is_x86"]: chromadb_issues.append("ChromaDB has known installation issues on older macOS Intel systems") chromadb_issues.append("May require specific dependency versions") compatibility["chromadb"]["recommendation"] = "problematic" compatibility["sqlite_vec"]["recommendation"] = "recommended" # Memory constraints total_memory_gb = 0 try: import psutil total_memory_gb = psutil.virtual_memory().total / (1024**3) except ImportError: # Fallback memory detection try: with open('/proc/meminfo', 'r') as f: for line in f: if line.startswith('MemTotal:'): total_memory_gb = int(line.split()[1]) / (1024**2) break except (FileNotFoundError, IOError): pass if total_memory_gb > 0 and total_memory_gb < 4: chromadb_issues.append(f"System has {total_memory_gb:.1f}GB RAM - ChromaDB may consume significant memory") compatibility["sqlite_vec"]["recommendation"] = "recommended" # Older Python versions python_version = f"{sys.version_info.major}.{sys.version_info.minor}" if sys.version_info < (3, 9): chromadb_issues.append(f"Python {python_version} may have ChromaDB compatibility issues") # ARM architecture considerations if system_info["is_arm"]: print_info("ARM architecture detected - both backends should work well") compatibility["chromadb"]["issues"] = chromadb_issues # Print compatibility analysis print_info("Storage Backend Compatibility Analysis:") for backend, info in compatibility.items(): status = "✅" if info["supported"] else "❌" rec_text = { "production": "☁️ PRODUCTION (Cloud)", "development": "🪶 DEVELOPMENT (Local)", "team": "👥 TEAM (Multi-client)", "recommended": "🌟 RECOMMENDED", "default": "📦 Standard", "problematic": "⚠️ May have issues", "lightweight": "🪶 Lightweight" }.get(info["recommendation"], "") print_info(f" {status} {backend.upper()}: {rec_text}") if info["issues"]: for issue in info["issues"]: print_info(f" • {issue}") return compatibility def choose_storage_backend(system_info, gpu_info, args): """Choose storage backend based on environment and user preferences.""" compatibility = detect_storage_backend_compatibility(system_info, gpu_info) # Check if user specified a backend via environment env_backend = os.environ.get('MCP_MEMORY_STORAGE_BACKEND') if env_backend: print_info(f"Using storage backend from environment: {env_backend}") return env_backend # Check for command line argument (we'll add this) if hasattr(args, 'storage_backend') and args.storage_backend: print_info(f"Using storage backend from command line: {args.storage_backend}") return args.storage_backend # Auto-select based on compatibility recommended_backend = None for backend, info in compatibility.items(): if info["recommendation"] == "recommended": recommended_backend = backend break if not recommended_backend: recommended_backend = "sqlite_vec" # Default fallback for local development # Interactive backend selection print_step("3b", "Storage Backend Selection") print_info("Choose the storage backend that best fits your use case:") print_info("") print_info("Usage scenarios:") print_info(" 1. Production/Shared (Cloudflare) - Cloud storage, multi-user access, requires credentials") print_info(" 2. Development/Personal (SQLite-vec) - Local, lightweight, single-user") print_info(" 3. Team/Multi-client (ChromaDB) - Local server, multiple clients") print_info(" 4. Auto-detect - Try optimal backend based on your system") print_info("") # Show compatibility analysis for i, (backend, info) in enumerate(compatibility.items(), 1): if backend == "auto_detect": continue status = "✅" if info["supported"] else "❌" rec_text = { "production": "☁️ PRODUCTION (Cloud)", "development": "🪶 DEVELOPMENT (Local)", "team": "👥 TEAM (Multi-client)", "recommended": "🌟 RECOMMENDED", "problematic": "⚠️ May have issues" }.get(info["recommendation"], "") print_info(f" {status} {i}. {backend.upper()}: {rec_text}") if info["issues"]: for issue in info["issues"]: print_info(f" • {issue}") print_info("") default_choice = "2" if compatibility["chromadb"]["recommendation"] == "problematic" else "2" while True: try: choice = input(f"Choose storage backend [1-4] (default: {default_choice}): ").strip() if not choice: choice = default_choice if choice == "1": return "cloudflare" elif choice == "2": return "sqlite_vec" elif choice == "3": return "chromadb" elif choice == "4": return "auto_detect" else: print_error("Please enter 1, 2, 3, or 4") except (EOFError, KeyboardInterrupt): print_info(f"\nUsing recommended backend: sqlite_vec") return "sqlite_vec" def setup_cloudflare_credentials(): """Interactive setup of Cloudflare credentials.""" print_step("3c", "Cloudflare Backend Setup") print_info("Cloudflare backend requires API credentials for D1 database and Vectorize index.") print_info("You'll need:") print_info(" • Cloudflare API Token (with D1 and Vectorize permissions)") print_info(" • Account ID") print_info(" • D1 Database ID") print_info(" • Vectorize Index name") print_info("") print_info("Visit https://dash.cloudflare.com to get these credentials.") print_info("") credentials = {} try: # Get API Token while True: token = input("Enter Cloudflare API Token: ").strip() if token: credentials['CLOUDFLARE_API_TOKEN'] = token break print_error("API token is required") # Get Account ID while True: account_id = input("Enter Cloudflare Account ID: ").strip() if account_id: credentials['CLOUDFLARE_ACCOUNT_ID'] = account_id break print_error("Account ID is required") # Get D1 Database ID while True: d1_id = input("Enter D1 Database ID: ").strip() if d1_id: credentials['CLOUDFLARE_D1_DATABASE_ID'] = d1_id break print_error("D1 Database ID is required") # Get Vectorize Index vectorize_index = input("Enter Vectorize Index name (default: mcp-memory-index): ").strip() if not vectorize_index: vectorize_index = "mcp-memory-index" credentials['CLOUDFLARE_VECTORIZE_INDEX'] = vectorize_index # Set storage backend credentials['MCP_MEMORY_STORAGE_BACKEND'] = 'cloudflare' return credentials except (EOFError, KeyboardInterrupt): print_info("\nCloudflare setup cancelled.") return None def save_credentials_to_env(credentials): """Save credentials to .env file.""" env_file = Path('.env') # Read existing .env content if it exists existing_lines = [] if env_file.exists(): with open(env_file, 'r') as f: existing_lines = f.readlines() # Filter out any existing Cloudflare variables filtered_lines = [ line for line in existing_lines if not any(key in line for key in credentials.keys()) ] # Add new credentials with open(env_file, 'w') as f: # Write existing non-Cloudflare lines f.writelines(filtered_lines) # Add separator if file wasn't empty if filtered_lines and not filtered_lines[-1].endswith('\n'): f.write('\n') if filtered_lines: f.write('\n# Cloudflare Backend Configuration\n') # Write Cloudflare credentials for key, value in credentials.items(): f.write(f'{key}={value}\n') print_success(f"Credentials saved to .env file") def test_cloudflare_connection(credentials): """Test Cloudflare API connection.""" print_info("Testing Cloudflare API connection...") try: import requests headers = { 'Authorization': f"Bearer {credentials['CLOUDFLARE_API_TOKEN']}", 'Content-Type': 'application/json' } # Test API token validity response = requests.get( "https://api.cloudflare.com/client/v4/user/tokens/verify", headers=headers, timeout=10 ) if response.status_code == 200: data = response.json() if data.get("success"): print_success("API token is valid") return True else: print_error(f"API token validation failed: {data.get('errors')}") return False else: print_error(f"API connection failed with status {response.status_code}") return False except ImportError: print_warning("Could not test connection (requests not installed)") print_info("Connection will be tested when the service starts") return True except Exception as e: print_warning(f"Could not test connection: {e}") print_info("Connection will be tested when the service starts") return True def install_storage_backend(backend, system_info): """Install the chosen storage backend.""" print_step("3c", f"Installing {backend} storage backend") if backend == "cloudflare": print_info("Cloudflare backend uses cloud services - no local dependencies needed") # Setup credentials interactively credentials = setup_cloudflare_credentials() if not credentials: print_warning("Cloudflare setup cancelled. Falling back to SQLite-vec.") return install_storage_backend("sqlite_vec", system_info) # Save credentials to .env file save_credentials_to_env(credentials) # Test connection connection_ok = test_cloudflare_connection(credentials) if connection_ok: print_success("Cloudflare backend configured successfully") return "cloudflare" else: print_warning("Cloudflare connection test failed. You can continue and fix credentials later.") fallback = input("Continue with Cloudflare anyway? [y/N]: ").strip().lower() if fallback.startswith('y'): return "cloudflare" else: print_info("Falling back to SQLite-vec for local development.") return install_storage_backend("sqlite_vec", system_info) elif backend == "sqlite_vec": return install_package_safe( "sqlite-vec", success_msg="SQLite-vec installed successfully", error_msg="Failed to install SQLite-vec" ) elif backend == "chromadb": chromadb_version = "0.5.23" success = install_package_safe( f"chromadb=={chromadb_version}", success_msg=f"ChromaDB {chromadb_version} installed successfully", error_msg="Failed to install ChromaDB" ) if not success: print_info("This is a known issue on some systems (especially older macOS Intel)") return success elif backend == "auto_detect": print_info("Attempting auto-detection...") print_info("Auto-detect will prioritize local backends (SQLite-vec, ChromaDB)") print_info("For production use, manually select Cloudflare backend.") # For auto-detect, try SQLite-vec first (most reliable) print_info("Trying SQLite-vec installation...") if install_storage_backend("sqlite_vec", system_info): print_success("SQLite-vec installed successfully") return "sqlite_vec" print_warning("SQLite-vec installation failed, trying ChromaDB...") if install_storage_backend("chromadb", system_info): print_success("ChromaDB installed successfully as fallback") return "chromadb" print_error("All local storage backends failed to install") print_info("Consider manually configuring Cloudflare backend for production use") return False return False def install_package(args): """Install the package with the appropriate dependencies, supporting pip or uv.""" print_step("3", "Installing MCP Memory Service") # Determine installation mode install_mode = [] if args.dev: install_mode = ['-e'] print_info("Installing in development mode") # Set environment variables for installation env = os.environ.copy() # Detect if pip is available # Check if pip is available pip_available, _ = run_command_safe( [sys.executable, '-m', 'pip', '--version'], silent=True ) # Detect if uv is available uv_path = shutil.which("uv") uv_available = uv_path is not None # Decide installer command prefix if pip_available: installer_cmd = [sys.executable, '-m', 'pip'] elif uv_available: installer_cmd = ['uv', 'pip'] print_warning("pip not found, but uv detected. Using 'uv pip' for installation.") else: print_error("Neither pip nor uv detected. Cannot install packages.") return False # Get system and GPU info system_info = detect_system() gpu_info = detect_gpu() # Choose and install storage backend chosen_backend = choose_storage_backend(system_info, gpu_info, args) # Check if chromadb was chosen but flag not provided if chosen_backend == "chromadb" and not args.with_chromadb: print_warning("ChromaDB backend selected but --with-chromadb flag not provided") print_info("ChromaDB requires heavy ML dependencies (~1-2GB).") print_info("To use ChromaDB, run: python scripts/installation/install.py --with-chromadb") print_info("Switching to SQLite-vec backend instead...") chosen_backend = "sqlite_vec" # ChromaDB automatically includes ML dependencies if args.with_chromadb: args.with_ml = True if chosen_backend == "auto_detect": # Handle auto-detection case - prefer sqlite_vec if chromadb not explicitly requested if not args.with_chromadb: print_info("Auto-detection: Using SQLite-vec (lightweight option)") chosen_backend = "sqlite_vec" else: actual_backend = install_storage_backend(chosen_backend, system_info) if not actual_backend: print_error("Failed to install any storage backend") return False chosen_backend = actual_backend else: # Install the chosen backend if not install_storage_backend(chosen_backend, system_info): print_error(f"Failed to install {chosen_backend} storage backend") return False # Set environment variable for chosen backend if chosen_backend == "sqlite_vec": env['MCP_MEMORY_STORAGE_BACKEND'] = 'sqlite_vec' print_info("Configured to use SQLite-vec storage backend") else: env['MCP_MEMORY_STORAGE_BACKEND'] = 'chromadb' print_info("Configured to use ChromaDB storage backend") # Set environment variables based on detected GPU if gpu_info.get("has_cuda"): print_info("Configuring for CUDA installation") elif gpu_info.get("has_rocm"): print_info("Configuring for ROCm installation") env['MCP_MEMORY_USE_ROCM'] = '1' elif gpu_info.get("has_mps"): print_info("Configuring for Apple Silicon MPS installation") env['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' elif gpu_info.get("has_directml"): print_info("Configuring for DirectML installation") env['MCP_MEMORY_USE_DIRECTML'] = '1' else: print_info("Configuring for CPU-only installation") env['MCP_MEMORY_USE_ONNX'] = '1' # Check for Homebrew PyTorch installation using_homebrew_pytorch = False if system_info.get("has_homebrew_pytorch"): print_info(f"Using existing Homebrew PyTorch installation (version: {system_info.get('homebrew_pytorch_version')})") using_homebrew_pytorch = True # Set the environment variable to use ONNX for embeddings env['MCP_MEMORY_USE_ONNX'] = '1' # Skip the PyTorch installation step pytorch_installed = True else: # Handle platform-specific PyTorch installation pytorch_installed = install_pytorch_platform_specific(system_info, gpu_info) if not pytorch_installed: print_warning("Platform-specific PyTorch installation failed, but will continue with package installation") try: # SQLite-vec with ONNX for macOS with homebrew PyTorch or compatibility issues if (system_info["is_macos"] and system_info["is_x86"] and (sys.version_info >= (3, 13) or using_homebrew_pytorch or args.skip_pytorch)): if using_homebrew_pytorch: print_info("Using Homebrew PyTorch - installing with SQLite-vec + ONNX configuration") elif args.skip_pytorch: print_info("Skipping PyTorch installation - using SQLite-vec + ONNX configuration") else: print_info("Using Python 3.13+ on macOS Intel - using SQLite-vec + ONNX configuration") # First try to install without ML dependencies try: cmd = installer_cmd + ['install', '--no-deps'] + install_mode + ['.'] success, _ = run_command_safe( cmd, success_msg="Package installed with --no-deps successfully", error_msg="Failed to install package with --no-deps", silent=False ) if not success: raise Exception("Installation failed") # Install core dependencies except torch/sentence-transformers print_info("Installing core dependencies except ML libraries...") # Create a list of dependencies to install # Note: mcp and tokenizers are already in core dependencies dependencies = [ "onnxruntime>=1.14.1" # ONNX runtime for lightweight embeddings ] # Add backend-specific dependencies (sqlite-vec, mcp, tokenizers are already in core) if args.with_chromadb: dependencies.append("chromadb==0.5.23") # Install dependencies cmd = [sys.executable, '-m', 'pip', 'install'] + dependencies success, _ = run_command_safe( cmd, success_msg="Core dependencies installed successfully", error_msg="Failed to install core dependencies", silent=False ) if not success: raise Exception("Core dependency installation failed") # Set environment variables for ONNX print_info("Configuring to use ONNX runtime for inference without PyTorch...") env['MCP_MEMORY_USE_ONNX'] = '1' if chosen_backend != "sqlite_vec": print_info("Switching to SQLite-vec backend for better compatibility") env['MCP_MEMORY_STORAGE_BACKEND'] = 'sqlite_vec' print_success("MCP Memory Service installed successfully (SQLite-vec + ONNX)") if using_homebrew_pytorch: print_info("Using Homebrew PyTorch installation for embedding generation") print_info("Environment configured to use SQLite-vec backend and ONNX runtime") else: print_warning("ML libraries (PyTorch/sentence-transformers) were not installed due to compatibility issues") print_info("The service will use ONNX runtime for inference instead") return True except Exception as e: print_error(f"Failed to install with ONNX approach: {e}") # Fall through to try standard installation # Standard installation with appropriate optional dependencies install_target = ['.'] # Determine which optional dependencies to include based on backend and flags if args.with_chromadb: install_target = ['.[chromadb]'] print_info("Installing with ChromaDB backend support (includes ML dependencies)") elif args.with_ml: if chosen_backend == "sqlite_vec": install_target = ['.[sqlite-ml]'] print_info("Installing SQLite-vec with full ML capabilities (torch + sentence-transformers)") else: install_target = ['.[ml]'] print_info("Installing with ML dependencies for semantic search and embeddings") elif chosen_backend == "sqlite_vec": install_target = ['.[sqlite]'] print_info("Installing SQLite-vec with lightweight ONNX embeddings (recommended)") print_info("For full ML capabilities with SQLite-vec, use --with-ml flag") else: print_info("Installing lightweight version (no ML dependencies by default)") print_info("For full functionality, use --with-ml flag or install with: pip install mcp-memory-service[ml]") cmd = installer_cmd + ['install'] + install_mode + install_target success, _ = run_command_safe( cmd, success_msg="MCP Memory Service installed successfully", error_msg="Failed to install MCP Memory Service", silent=False ) return success except Exception as e: print_error(f"Failed to install MCP Memory Service: {e}") # Special handling for macOS with compatibility issues if system_info["is_macos"] and system_info["is_x86"]: print_warning("Installation on macOS Intel is challenging") print_info("Try manually installing with:") print_info("1. pip install --no-deps .") print_info("2. pip install sqlite-vec>=0.1.0 mcp>=1.0.0,<2.0.0 onnxruntime>=1.14.1") print_info("3. export MCP_MEMORY_USE_ONNX=1") print_info("4. export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec") if system_info.get("has_homebrew_pytorch"): print_info("Homebrew PyTorch was detected but installation still failed.") print_info("Try running: python install.py --storage-backend sqlite_vec --skip-pytorch") return False def configure_paths(args): """Configure paths for the MCP Memory Service.""" print_step("4", "Configuring paths") # Get system info system_info = detect_system() # Determine home directory home_dir = Path.home() # Determine base directory based on platform if platform.system() == 'Darwin': # macOS base_dir = home_dir / 'Library' / 'Application Support' / 'mcp-memory' elif platform.system() == 'Windows': # Windows base_dir = Path(os.environ.get('LOCALAPPDATA', '')) / 'mcp-memory' else: # Linux and others base_dir = home_dir / '.local' / 'share' / 'mcp-memory' # Create directories based on storage backend storage_backend = os.environ.get('MCP_MEMORY_STORAGE_BACKEND', 'chromadb') if storage_backend == 'sqlite_vec': # For sqlite-vec, we need a database file path storage_path = args.chroma_path or (base_dir / 'sqlite_vec.db') storage_dir = storage_path.parent if storage_path.name.endswith('.db') else storage_path backups_path = args.backups_path or (base_dir / 'backups') try: os.makedirs(storage_dir, exist_ok=True) os.makedirs(backups_path, exist_ok=True) print_info(f"SQLite-vec database: {storage_path}") print_info(f"Backups path: {backups_path}") # Test if directory is writable test_file = os.path.join(storage_dir, '.write_test') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) except Exception as e: print_error(f"Failed to configure SQLite-vec paths: {e}") return False else: # ChromaDB configuration chroma_path = args.chroma_path or (base_dir / 'chroma_db') backups_path = args.backups_path or (base_dir / 'backups') storage_path = chroma_path try: os.makedirs(chroma_path, exist_ok=True) os.makedirs(backups_path, exist_ok=True) print_info(f"ChromaDB path: {chroma_path}") print_info(f"Backups path: {backups_path}") # Test if directories are writable test_file = os.path.join(chroma_path, '.write_test') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) except Exception as e: print_error(f"Failed to configure ChromaDB paths: {e}") return False # Test backups directory for both backends try: test_file = os.path.join(backups_path, '.write_test') with open(test_file, 'w') as f: f.write('test') os.remove(test_file) print_success("Storage directories created and are writable") except Exception as e: print_error(f"Failed to test backups directory: {e}") return False # Configure Claude Desktop if available claude_config_paths = [ home_dir / 'Library' / 'Application Support' / 'Claude' / 'claude_desktop_config.json', home_dir / '.config' / 'Claude' / 'claude_desktop_config.json', Path('claude_config') / 'claude_desktop_config.json' ] for config_path in claude_config_paths: if config_path.exists(): print_info(f"Found Claude Desktop config at {config_path}") try: import json with open(config_path, 'r') as f: config = json.load(f) # Update or add MCP Memory configuration if 'mcpServers' not in config: config['mcpServers'] = {} # Create environment configuration based on storage backend env_config = { "MCP_MEMORY_BACKUPS_PATH": str(backups_path), "MCP_MEMORY_STORAGE_BACKEND": storage_backend } if storage_backend == 'sqlite_vec': env_config["MCP_MEMORY_SQLITE_PATH"] = str(storage_path) else: env_config["MCP_MEMORY_CHROMA_PATH"] = str(storage_path) # Create or update the memory server configuration if system_info["is_windows"]: # Use the memory_wrapper.py script for Windows script_path = os.path.abspath("memory_wrapper.py") config['mcpServers']['memory'] = { "command": "python", "args": [script_path], "env": env_config } print_info("Configured Claude Desktop to use memory_wrapper.py for Windows") else: # Use the standard configuration for other platforms config['mcpServers']['memory'] = { "command": "uv", "args": [ "--directory", os.path.abspath("."), "run", "memory" ], "env": env_config } with open(config_path, 'w') as f: json.dump(config, f, indent=2) print_success("Updated Claude Desktop configuration") except Exception as e: print_warning(f"Failed to update Claude Desktop configuration: {e}") break return True except Exception as e: print_error(f"Failed to configure paths: {e}") return False def verify_installation(): """Verify the installation.""" print_step("5", "Verifying installation") # Get system info system_info = detect_system() # Check if the package is installed try: import mcp_memory_service print_success(f"MCP Memory Service is installed: {mcp_memory_service.__file__}") except ImportError: print_error("MCP Memory Service is not installed correctly") return False # Check if the entry point is available memory_script = shutil.which('memory') if memory_script: print_success(f"Memory command is available: {memory_script}") else: print_warning("Memory command is not available in PATH") # Check storage backend installation storage_backend = os.environ.get('MCP_MEMORY_STORAGE_BACKEND', 'sqlite_vec') if storage_backend == 'sqlite_vec': try: import sqlite_vec print_success(f"SQLite-vec is installed: {sqlite_vec.__version__}") except ImportError: print_error("SQLite-vec is not installed correctly") return False elif storage_backend == 'chromadb': try: import chromadb print_success(f"ChromaDB is installed: {chromadb.__version__}") except ImportError: print_error("ChromaDB is not installed correctly") return False # Check for ONNX runtime try: import onnxruntime print_success(f"ONNX Runtime is installed: {onnxruntime.__version__}") use_onnx = os.environ.get('MCP_MEMORY_USE_ONNX', '').lower() in ('1', 'true', 'yes') if use_onnx: print_info("Environment configured to use ONNX runtime for inference") except ImportError: print_warning("ONNX Runtime is not installed. This is recommended for CPU-only operation.") print_info("Install with: pip install onnxruntime>=1.14.1") # Check for Homebrew PyTorch homebrew_pytorch = False if system_info.get("has_homebrew_pytorch"): homebrew_pytorch = True print_success(f"Homebrew PyTorch detected: {system_info.get('homebrew_pytorch_version')}") print_info("Using system-installed PyTorch instead of pip version") # Check ML dependencies as optional pytorch_installed = False try: import torch pytorch_installed = True print_info(f"PyTorch is installed: {torch.__version__}") # Check for CUDA if torch.cuda.is_available(): print_success(f"CUDA is available: {torch.version.cuda}") print_info(f"GPU: {torch.cuda.get_device_name(0)}") # Check for MPS (Apple Silicon) elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available(): print_success("MPS (Metal Performance Shaders) is available") # Check for DirectML else: try: import torch_directml print_success(f"DirectML is available: {torch_directml.__version__}") except ImportError: print_info("Using CPU-only PyTorch") # For macOS Intel, verify compatibility with sentence-transformers if system_info["is_macos"] and system_info["is_x86"]: torch_version = torch.__version__.split('.') major, minor = int(torch_version[0]), int(torch_version[1]) print_info(f"Verifying torch compatibility on macOS Intel (v{major}.{minor})") if major < 1 or (major == 1 and minor < 6): print_warning(f"PyTorch version {torch.__version__} may be too old for sentence-transformers") elif major > 2 or (major == 2 and minor > 1): print_warning(f"PyTorch version {torch.__version__} may be too new for sentence-transformers 2.2.2") print_info("If you encounter issues, try downgrading to torch 2.0.1") except ImportError: print_warning("PyTorch is not installed via pip. This is okay for basic operation with SQLite-vec backend.") if homebrew_pytorch: print_info("Using Homebrew PyTorch installation instead of pip version") else: print_info("For full functionality including embedding generation, install with: pip install 'mcp-memory-service[ml]'") pytorch_installed = False # Check if sentence-transformers is installed correctly (only if PyTorch is installed) if pytorch_installed or homebrew_pytorch: try: import sentence_transformers print_success(f"sentence-transformers is installed: {sentence_transformers.__version__}") if pytorch_installed: # Verify compatibility between torch and sentence-transformers st_version = sentence_transformers.__version__.split('.') torch_version = torch.__version__.split('.') st_major, st_minor = int(st_version[0]), int(st_version[1]) torch_major, torch_minor = int(torch_version[0]), int(torch_version[1]) # Specific compatibility check for macOS Intel if system_info["is_macos"] and system_info["is_x86"]: if st_major >= 3 and (torch_major < 1 or (torch_major == 1 and torch_minor < 11)): print_warning(f"sentence-transformers {sentence_transformers.__version__} requires torch>=1.11.0") print_info("This may cause runtime issues - consider downgrading sentence-transformers to 2.2.2") # Verify by trying to load a model (minimal test) try: print_info("Testing sentence-transformers model loading...") test_model = sentence_transformers.SentenceTransformer('paraphrase-MiniLM-L3-v2') print_success("Successfully loaded test model") except Exception as e: print_warning(f"Model loading test failed: {e}") print_warning("There may be compatibility issues between PyTorch and sentence-transformers") except ImportError: print_warning("sentence-transformers is not installed. This is okay for basic operation with SQLite-vec backend.") print_info("For full functionality including embedding generation, install with: pip install 'mcp-memory-service[ml]'") # Check for SQLite-vec + ONNX configuration if storage_backend == 'sqlite_vec' and os.environ.get('MCP_MEMORY_USE_ONNX', '').lower() in ('1', 'true', 'yes'): print_success("SQLite-vec + ONNX configuration is set up correctly") print_info("This configuration can run without PyTorch dependency") try: # Import the key components to verify installation from mcp_memory_service.storage.sqlite_vec import SqliteVecMemoryStorage from mcp_memory_service.models.memory import Memory print_success("SQLite-vec + ONNX components loaded successfully") # Check paths sqlite_path = os.environ.get('MCP_MEMORY_SQLITE_PATH', '') if sqlite_path: print_info(f"SQLite-vec database path: {sqlite_path}") else: print_warning("MCP_MEMORY_SQLITE_PATH is not set") backups_path = os.environ.get('MCP_MEMORY_BACKUPS_PATH', '') if backups_path: print_info(f"Backups path: {backups_path}") else: print_warning("MCP_MEMORY_BACKUPS_PATH is not set") except ImportError as e: print_error(f"Failed to import SQLite-vec components: {e}") return False # Check if MCP Memory Service package is installed correctly try: import mcp_memory_service print_success(f"MCP Memory Service is installed correctly") return True except ImportError: print_error("MCP Memory Service is not installed correctly") return False def install_claude_hooks(args, system_info): """Install Claude Code memory awareness hooks.""" print_step("5", "Installing Claude Code Memory Awareness Hooks") try: # Check if Claude Code is available claude_available = shutil.which("claude") is not None if not claude_available: print_warning("Claude Code CLI not found") print_info("You can install hooks manually later using:") print_info(" cd claude-hooks && python install_hooks.py --basic") return print_info("Claude Code CLI detected") # Use unified Python installer for cross-platform compatibility claude_hooks_dir = Path(__file__).parent.parent.parent / "claude-hooks" unified_installer = claude_hooks_dir / "install_hooks.py" if not unified_installer.exists(): print_error("Unified hook installer not found at expected location") print_info("Please ensure the unified installer is available:") print_info(f" Expected: {unified_installer}") return # Prepare installer command with appropriate options version = get_package_version() if args.install_natural_triggers: print_info(f"Installing Natural Memory Triggers v{version}...") installer_cmd = [sys.executable, str(unified_installer), "--natural-triggers"] else: print_info("Installing standard memory awareness hooks...") installer_cmd = [sys.executable, str(unified_installer), "--basic"] # Run the unified Python installer print_info(f"Running unified hook installer: {unified_installer.name}") result = subprocess.run( installer_cmd, cwd=str(claude_hooks_dir), capture_output=True, text=True ) if result.returncode == 0: print_success("Claude Code memory awareness hooks installed successfully") if args.install_natural_triggers: print_info(f"✅ Natural Memory Triggers v{version} enabled") print_info("✅ Intelligent trigger detection with 85%+ accuracy") print_info("✅ Multi-tier performance optimization") print_info("✅ CLI management tools available") print_info("") print_info("Manage Natural Memory Triggers:") print_info(" node ~/.claude/hooks/memory-mode-controller.js status") print_info(" node ~/.claude/hooks/memory-mode-controller.js profile balanced") else: print_info("✅ Standard memory awareness hooks enabled") print_info("✅ Session-start and session-end hooks active") else: print_warning("Hook installation completed with warnings") if result.stdout: print_info("Installer output:") print_info(result.stdout) if result.stderr: print_warning("Installer warnings:") print_warning(result.stderr) except Exception as e: print_warning(f"Failed to install hooks automatically: {e}") print_info("You can install hooks manually later using the unified installer:") print_info(" cd claude-hooks && python install_hooks.py --basic") if args.install_natural_triggers: print_info("For Natural Memory Triggers:") print_info(" cd claude-hooks && python install_hooks.py --natural-triggers") def main(): """Main installation function.""" parser = argparse.ArgumentParser(description="Install MCP Memory Service") parser.add_argument('--dev', action='store_true', help='Install in development mode') parser.add_argument('--chroma-path', type=str, help='Path to ChromaDB storage') parser.add_argument('--backups-path', type=str, help='Path to backups storage') parser.add_argument('--force-compatible-deps', action='store_true', help='Force compatible versions of PyTorch (2.0.1) and sentence-transformers (2.2.2)') parser.add_argument('--fallback-deps', action='store_true', help='Use fallback versions of PyTorch (1.13.1) and sentence-transformers (2.2.2)') parser.add_argument('--storage-backend', choices=['cloudflare', 'sqlite_vec', 'chromadb', 'auto_detect'], help='Choose storage backend: cloudflare (production), sqlite_vec (development), chromadb (team), or auto_detect') parser.add_argument('--skip-pytorch', action='store_true', help='Skip PyTorch installation and use ONNX runtime with SQLite-vec backend instead') parser.add_argument('--use-homebrew-pytorch', action='store_true', help='Use existing Homebrew PyTorch installation instead of pip version') parser.add_argument('--install-hooks', action='store_true', help='Install Claude Code memory awareness hooks after main installation') parser.add_argument('--install-natural-triggers', action='store_true', help='Install Natural Memory Triggers (requires Claude Code)') parser.add_argument('--with-ml', action='store_true', help='Include ML dependencies (torch, sentence-transformers) for semantic search and embeddings') parser.add_argument('--with-chromadb', action='store_true', help='Include ChromaDB backend support (automatically includes ML dependencies)') args = parser.parse_args() print_header("MCP Memory Service Installation") # Step 1: Detect system print_step("1", "Detecting system") system_info = detect_system() # Check if user requested force-compatible dependencies for macOS Intel if args.force_compatible_deps: if system_info["is_macos"] and system_info["is_x86"]: print_info("Installing compatible dependencies as requested...") # Select versions based on Python version python_version = sys.version_info if python_version >= (3, 13): # Python 3.13+ compatible versions torch_version = "2.3.0" torch_vision_version = "0.18.0" torch_audio_version = "2.3.0" st_version = "3.0.0" else: # Older Python versions torch_version = "2.0.1" torch_vision_version = "2.0.1" torch_audio_version = "2.0.1" st_version = "2.2.2" cmd = [ sys.executable, '-m', 'pip', 'install', f"torch=={torch_version}", f"torchvision=={torch_vision_version}", f"torchaudio=={torch_audio_version}", f"sentence-transformers=={st_version}" ] success, _ = run_command_safe( cmd, success_msg="Compatible dependencies installed successfully", error_msg="Failed to install compatible dependencies", silent=False ) else: print_warning("--force-compatible-deps is only applicable for macOS with Intel CPUs") # Check if user requested fallback dependencies for troubleshooting if args.fallback_deps: print_info("Installing fallback dependencies as requested...") # Select versions based on Python version python_version = sys.version_info if python_version >= (3, 13): # Python 3.13+ compatible fallback versions torch_version = "2.3.0" torch_vision_version = "0.18.0" torch_audio_version = "2.3.0" st_version = "3.0.0" else: # Older Python fallback versions torch_version = "1.13.1" torch_vision_version = "0.14.1" torch_audio_version = "0.13.1" st_version = "2.2.2" cmd = [ sys.executable, '-m', 'pip', 'install', f"torch=={torch_version}", f"torchvision=={torch_vision_version}", f"torchaudio=={torch_audio_version}", f"sentence-transformers=={st_version}" ] success, _ = run_command_safe( cmd, success_msg="Fallback dependencies installed successfully", error_msg="Failed to install fallback dependencies", silent=False ) # Step 2: Check dependencies if not check_dependencies(): sys.exit(1) # Step 3: Install package if not install_package(args): # If installation fails and we're on macOS Intel, suggest using the force-compatible-deps option if system_info["is_macos"] and system_info["is_x86"]: print_warning("Installation failed on macOS Intel.") print_info("Try running the script with '--force-compatible-deps' to force compatible versions:") print_info("python install.py --force-compatible-deps") sys.exit(1) # Step 4: Configure paths if not configure_paths(args): print_warning("Path configuration failed, but installation may still work") # Step 5: Verify installation if not verify_installation(): print_warning("Installation verification failed, but installation may still work") # If verification fails and we're on macOS Intel, suggest using the force-compatible-deps option if system_info["is_macos"] and system_info["is_x86"]: python_version = sys.version_info print_info("For macOS Intel compatibility issues, try these steps:") print_info("1. First uninstall current packages: pip uninstall -y torch torchvision torchaudio sentence-transformers") print_info("2. Then reinstall with compatible versions: python install.py --force-compatible-deps") if python_version >= (3, 13): print_info("For Python 3.13+, you may need to manually install the following:") print_info("pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0") print_info("pip install sentence-transformers==3.0.0") print_header("Installation Complete") # Get final storage backend info final_backend = os.environ.get('MCP_MEMORY_STORAGE_BACKEND', 'chromadb') use_onnx = os.environ.get('MCP_MEMORY_USE_ONNX', '').lower() in ('1', 'true', 'yes') print_info("You can now run the MCP Memory Service using the 'memory' command") print_info(f"Storage Backend: {final_backend.upper()}") if final_backend == 'sqlite_vec': print_info("✅ Using SQLite-vec - lightweight, fast, minimal dependencies") print_info(" • No complex dependencies or build issues") print_info(" • Excellent performance for typical use cases") else: print_info("✅ Using ChromaDB - full-featured vector database") print_info(" • Advanced features and extensive ecosystem") if use_onnx: print_info("✅ Using ONNX Runtime for inference") print_info(" • Compatible with Homebrew PyTorch") print_info(" • Reduced dependencies for better compatibility") # Show ML dependencies status if args.with_ml or args.with_chromadb: print_info("✅ ML Dependencies Installed") print_info(" • Full semantic search and embedding generation enabled") print_info(" • PyTorch and sentence-transformers available") else: print_info("ℹ️ Lightweight Installation (No ML Dependencies)") print_info(" • Basic functionality without semantic search") print_info(" • To enable full features: pip install mcp-memory-service[ml]") print_info("For more information, see the README.md file") # Install hooks if requested if args.install_hooks or args.install_natural_triggers: install_claude_hooks(args, system_info) # Print macOS Intel specific information if applicable if system_info["is_macos"] and system_info["is_x86"]: print_info("\nMacOS Intel Notes:") if system_info.get("has_homebrew_pytorch"): print_info("- Using Homebrew PyTorch installation: " + system_info.get("homebrew_pytorch_version", "Unknown")) print_info("- The MCP Memory Service is configured to use SQLite-vec + ONNX runtime") print_info("- To start the memory service, use:") print_info(" export MCP_MEMORY_USE_ONNX=1") print_info(" export MCP_MEMORY_STORAGE_BACKEND=sqlite_vec") print_info(" memory") else: print_info("- If you encounter issues, try the --force-compatible-deps option") python_version = sys.version_info if python_version >= (3, 13): print_info("- For optimal performance on Intel Macs with Python 3.13+, torch==2.3.0 and sentence-transformers==3.0.0 are recommended") print_info("- You can manually install these versions with:") print_info(" pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 sentence-transformers==3.0.0") else: print_info("- For optimal performance on Intel Macs, torch==2.0.1 and sentence-transformers==2.2.2 are recommended") print_info("- You can manually install these versions with:") print_info(" pip install torch==2.0.1 torchvision==2.0.1 torchaudio==2.0.1 sentence-transformers==2.2.2") print_info("\nTroubleshooting Tips:") print_info("- If you have a Homebrew PyTorch installation, use: --use-homebrew-pytorch") print_info("- To completely skip PyTorch installation, use: --skip-pytorch") print_info("- To force the SQLite-vec backend, use: --storage-backend sqlite_vec") print_info("- For lightweight installation without ML, use: (default behavior)") print_info("- For full ML capabilities, use: --with-ml") print_info("- For ChromaDB with ML, use: --with-chromadb") print_info("- For a quick test, try running: python test_memory.py") print_info("- To install Claude Code hooks: --install-hooks") print_info("- To install Natural Memory Triggers: --install-natural-triggers") if __name__ == "__main__": main()

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server