Skip to main content
Glama

MCP Memory Service

api-reference.md3.56 kB
# MCP Memory Service — API Reference This document catalogs available APIs exposed via the MCP servers and summarizes request and response patterns. ## MCP (FastMCP HTTP) Tools Defined in `src/mcp_memory_service/mcp_server.py` using `@mcp.tool()`: - `store_memory(content, tags=None, memory_type="note", metadata=None, client_hostname=None)` - Stores a new memory; tags and metadata optional. If `INCLUDE_HOSTNAME=true`, a `source:<hostname>` tag and `hostname` metadata are added. - Response: `{ success: bool, message: str, content_hash: str }`. - `retrieve_memory(query, n_results=5, min_similarity=0.0)` - Semantic search by query; returns up to `n_results` matching memories. - Response: `{ memories: [{ content, content_hash, tags, memory_type, created_at, similarity_score }...], query, total_results }`. - `search_by_tag(tags, match_all=False)` - Search by a tag or list of tags. `match_all=true` requires all tags; otherwise any. - Response: `{ memories: [{ content, content_hash, tags, memory_type, created_at }...], search_tags: [...], match_all, total_results }`. - `delete_memory(content_hash)` - Deletes a memory by its content hash. - Response: `{ success: bool, message: str, content_hash }`. - `check_database_health()` - Health and status of the configured backend. - Response: `{ status: "healthy"|"error", backend, statistics: { total_memories, total_tags, storage_size, last_backup }, timestamp? }`. Transport: `mcp.run("streamable-http")`, default host `0.0.0.0`, default port `8000` or `MCP_SERVER_PORT`/`MCP_SERVER_HOST`. ## MCP (stdio) Server Tools and Prompts Defined in `src/mcp_memory_service/server.py` using `mcp.server.Server`. Exposes a broader set of tools/prompts beyond the core FastMCP tools above. Highlights: - Core memory ops: store, retrieve/search, search_by_tag(s), delete, delete_by_tag, cleanup_duplicates, update_memory_metadata, time-based recall. - Analysis/export: knowledge_analysis, knowledge_export (supports `format: json|markdown|text`, optional filters). - Maintenance: memory_cleanup (duplicate detection heuristics), health/stats, tag listing. - Consolidation (optional): association, clustering, compression, forgetting tasks and schedulers when enabled. Note: The stdio server dynamically picks storage mode for multi-client scenarios (direct SQLite-vec with WAL vs. HTTP coordination), suppresses stdout for Claude Desktop, and prints richer diagnostics for LM Studio. ## HTTP Interface - For FastMCP, HTTP transport is used to carry MCP protocol; endpoints are handled by the FastMCP layer and not intended as a REST API surface. - A dedicated HTTP API and dashboard exist under `src/mcp_memory_service/web/` in some distributions. In this repo version, coordination HTTP is internal and the recommended external interface is MCP. ## Error Model and Logging - MCP tool errors are surfaced as `{ success: false, message: <details> }` or include `error` fields. - Logging routes WARNING+ to stderr (Claude Desktop strict mode), info/debug to stdout only for LM Studio; set `LOG_LEVEL` for verbosity. ## Examples Store memory: ``` tool: store_memory args: { "content": "Refactored auth flow to use OAuth 2.1", "tags": ["auth", "refactor"], "memory_type": "note" } ``` Retrieve by query: ``` tool: retrieve_memory args: { "query": "OAuth refactor", "n_results": 5 } ``` Search by tags: ``` tool: search_by_tag args: { "tags": ["auth", "refactor"], "match_all": true } ``` Delete by hash: ``` tool: delete_memory args: { "content_hash": "<hash>" } ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server