Skip to main content
Glama

MCP Memory Service

memory-maintenance.md11.5 kB
# Memory Maintenance Guide A comprehensive guide for maintaining and organizing your MCP Memory Service knowledge base through systematic review, analysis, and re-categorization processes. ## 🎯 Overview Memory maintenance is essential for keeping your knowledge base organized, searchable, and valuable over time. This guide provides practical workflows for identifying poorly organized memories and transforming them into a well-structured knowledge system. ## 📋 Quick Start ### Basic Maintenance Session 1. **Identify untagged memories**: `retrieve_memory({"query": "untagged memories", "n_results": 20})` 2. **Analyze content themes**: Look for projects, technologies, activities, status indicators 3. **Apply standardized tags**: Use consistent categorization schema 4. **Replace old memories**: Create new tagged version, delete old untagged version 5. **Document results**: Store summary of maintenance session ### Maintenance Schedule Recommendations - **Weekly**: Review memories from past 7 days - **Monthly**: Comprehensive review of recent memories + spot check older ones - **Quarterly**: Full database health check and optimization ## 🔍 Step-by-Step Maintenance Process ### Phase 1: Assessment and Planning #### 1.1 Database Health Check ```javascript // Check overall database status check_database_health() ``` **What to look for:** - Total memory count - Database health status - Recent activity patterns - Error indicators #### 1.2 Identify Untagged Memories **Search Strategy:** ```javascript // Primary search for untagged memories retrieve_memory({ "n_results": 15, "query": "untagged memories without tags minimal tags single tag" }) // Alternative searches retrieve_memory({"query": "test memory basic simple concept", "n_results": 20}) recall_memory({"query": "memories from last week", "n_results": 25}) ``` **Identification Criteria:** - Memories with no tags - Memories with only generic tags (`test`, `memory`, `note`) - Memories with inconsistent tag formats - Old memories that predate tag standardization #### 1.3 Categorize by Priority **High Priority:** - Frequently accessed memories - Critical project information - Recent important developments **Medium Priority:** - Historical documentation - Reference materials - Tutorial content **Low Priority:** - Test memories (evaluate for deletion) - Outdated information - Duplicate content ### Phase 2: Analysis and Categorization #### 2.1 Content Theme Analysis For each identified memory, analyze: **Project Context:** - Which project does this relate to? - Is it part of a larger initiative? - What's the project phase/status? **Technology Stack:** - Programming languages mentioned - Frameworks and libraries - Tools and platforms - Databases and services **Activity Type:** - Development work - Testing and debugging - Documentation - Research and planning - Issue resolution **Content Classification:** - Concept or idea - Tutorial or guide - Reference material - Troubleshooting solution - Best practice #### 2.2 Tag Assignment Strategy **Multi-Category Tagging:** Apply tags from multiple categories for comprehensive organization: ```javascript // Example: Well-tagged memory { "tags": [ "mcp-memory-service", // Project "python", "chromadb", // Technologies "debugging", "testing", // Activities "resolved", // Status "backend", // Domain "troubleshooting" // Content type ] } ``` **Tag Selection Guidelines:** 1. **Start with Project/Context**: What's the main project or domain? 2. **Add Technology Tags**: What tools, languages, or frameworks? 3. **Include Activity Tags**: What was being done? 4. **Specify Status**: What's the current state? 5. **Add Content Type**: What kind of information is this? ### Phase 3: Implementation #### 3.1 Memory Re-tagging Process **For each memory to be re-tagged:** 1. **Copy Content**: Preserve exact content 2. **Create New Memory**: With improved tags 3. **Verify Storage**: Confirm new memory exists 4. **Delete Old Memory**: Remove untagged version 5. **Document Change**: Record in maintenance log **Example Implementation:** ```javascript // Step 1: Create properly tagged memory store_memory({ "content": "TEST: Timestamp debugging memory created for issue #7 investigation", "metadata": { "tags": ["test", "debugging", "issue-7", "timestamp-test", "mcp-memory-service", "verification"], "type": "debug-test" } }) // Step 2: Delete old untagged memory delete_memory({ "content_hash": "b3f874baee0c1261907c8f80c3e33d1977485f66c17078ed611b6f1c744cb1f8" }) ``` #### 3.2 Batch Processing Tips **Efficiency Strategies:** - Group similar memories for consistent tagging - Use template patterns for common memory types - Process one category at a time (e.g., all test memories) - Take breaks between batches to maintain quality **Quality Control:** - Double-check tag spelling and format - Verify content hasn't been modified - Confirm old memory deletion - Test search functionality with new tags ### Phase 4: Verification and Documentation #### 4.1 Verification Checklist **After each memory:** - [ ] New memory stored successfully - [ ] Tags applied correctly - [ ] Old memory deleted - [ ] Search returns new memory **After maintenance session:** - [ ] All targeted memories processed - [ ] Database health check passed - [ ] No orphaned or broken memories - [ ] Search functionality improved #### 4.2 Session Documentation **Create maintenance summary memory:** ```javascript store_memory({ "content": "Memory Maintenance Session - [Date]: Successfully processed X memories...", "metadata": { "tags": ["memory-maintenance", "session-summary", "tag-management"], "type": "maintenance-record" } }) ``` **Include in summary:** - Number of memories processed - Categories addressed - Tag patterns applied - Time investment - Quality improvements - Next steps identified ## 🎯 Common Maintenance Scenarios ### Scenario 1: Test Memory Cleanup **Situation**: Numerous test memories from development work **Approach:** 1. Identify all test-related memories 2. Evaluate each for permanent value 3. Re-tag valuable tests with specific context 4. Delete obsolete or redundant tests **Example tags for valuable tests:** ``` ["test", "verification", "issue-7", "timestamp-test", "mcp-memory-service", "quality-assurance"] ``` ### Scenario 2: Project Documentation Organization **Situation**: Project memories scattered without clear organization **Approach:** 1. Group by project phase (planning, development, deployment) 2. Add temporal context (month/quarter) 3. Include status information 4. Link related memories with consistent tags **Tag patterns:** ``` Project memories: ["project-name", "phase", "technology", "status", "domain"] Meeting notes: ["meeting", "project-name", "date", "decisions", "action-items"] ``` ### Scenario 3: Technical Solution Archive **Situation**: Troubleshooting solutions need better organization **Approach:** 1. Categorize by technology/platform 2. Add problem domain tags 3. Include resolution status 4. Tag with difficulty/complexity **Example organization:** ``` ["troubleshooting", "python", "chromadb", "connection-issues", "resolved", "backend"] ``` ## 🛠️ Maintenance Tools and Scripts ### Helper Queries **Find potentially untagged memories:** ```javascript // Various search approaches retrieve_memory({"query": "test simple basic example", "n_results": 20}) recall_memory({"query": "memories from last month", "n_results": 30}) search_by_tag({"tags": ["test"]}) // Review generic tags ``` **Content pattern analysis:** ```javascript // Look for specific patterns that need organization retrieve_memory({"query": "TODO FIXME DEBUG ERROR", "n_results": 15}) retrieve_memory({"query": "issue bug problem solution", "n_results": 15}) ``` ### Batch Processing Templates **Standard test memory re-tagging:** ```javascript const testMemoryPattern = { "tags": ["test", "[specific-function]", "[project]", "[domain]", "verification"], "type": "test-record" } ``` **Documentation memory pattern:** ```javascript const documentationPattern = { "tags": ["documentation", "[project]", "[topic]", "[technology]", "reference"], "type": "documentation" } ``` ## 📊 Maintenance Metrics ### Success Indicators **Quantitative Metrics:** - Percentage of tagged memories - Search result relevance improvement - Time to find specific information - Memory retrieval accuracy **Qualitative Metrics:** - Ease of knowledge discovery - Consistency of organization - Usefulness of search results - Overall system usability ### Progress Tracking **Session Metrics:** - Memories processed per hour - Categories organized - Tag patterns established - Quality improvements achieved **Long-term Tracking:** - Monthly maintenance time investment - Database organization score - Knowledge retrieval efficiency - User satisfaction with search ## 🔄 Recurring Maintenance ### Weekly Maintenance (15-30 minutes) ``` Weekly Memory Maintenance: 1. Recall memories from 'last week' 2. Identify any untagged or poorly tagged items 3. Apply quick categorization 4. Focus on recent work and current projects 5. Update any status changes (resolved issues, completed tasks) ``` ### Monthly Maintenance (1-2 hours) ``` Monthly Memory Maintenance: 1. Comprehensive review of recent memories 2. Spot check older memories for organization 3. Update project status tags 4. Consolidate related memories 5. Archive or delete obsolete information 6. Generate maintenance summary report ``` ### Quarterly Maintenance (2-4 hours) ``` Quarterly Memory Maintenance: 1. Full database health assessment 2. Tag schema review and updates 3. Memory consolidation and cleanup 4. Performance optimization 5. Backup and archival processes 6. Strategic knowledge organization review ``` ## 🎯 Best Practices ### Do's ✅ **Process regularly**: Small, frequent sessions beat large overhauls ✅ **Use consistent patterns**: Develop standard approaches for common scenarios ✅ **Document decisions**: Record maintenance choices for future reference ✅ **Verify thoroughly**: Always confirm changes worked as expected ✅ **Focus on value**: Prioritize high-impact memories first ### Don'ts ❌ **Rush the process**: Quality categorization takes time ❌ **Change content**: Only modify tags and metadata, preserve original content ❌ **Delete without backup**: Ensure new memory is stored before deleting old ❌ **Ignore verification**: Always test that maintenance improved functionality ❌ **Work when tired**: Categorization quality suffers with fatigue ## 🚀 Advanced Techniques ### Automated Assistance **Use semantic search for tag suggestions:** ```javascript // Find similar memories for tag pattern ideas retrieve_memory({"query": "[memory content excerpt]", "n_results": 5}) ``` **Pattern recognition:** ```javascript // Identify common themes for standardization search_by_tag({"tags": ["technology-name"]}) // See existing patterns ``` ### Integration Workflows **Connect with external tools:** - Export tagged memories for documentation systems - Sync with project management tools - Generate reports for team sharing - Create knowledge graphs from tag relationships --- *This guide provides the foundation for maintaining a professional-grade knowledge management system. Regular maintenance ensures your MCP Memory Service continues to provide maximum value as your knowledge base grows.*

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/doobidoo/mcp-memory-service'

If you have feedback or need assistance with the MCP directory API, please join our Discord server