Skip to main content
Glama
groq.py1.86 kB
""" Groq provider implementation. """ import os from typing import List import logging from groq import Groq from dotenv import load_dotenv # Load environment variables load_dotenv() # Configure logging logger = logging.getLogger(__name__) # Initialize Groq client client = Groq(api_key=os.environ.get("GROQ_API_KEY")) def prompt(text: str, model: str) -> str: """ Send a prompt to Groq and get a response. Args: text: The prompt text model: The model name Returns: Response string from the model """ try: logger.info(f"Sending prompt to Groq model: {model}") # Create chat completion chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": text}], model=model, ) # Extract response content return chat_completion.choices[0].message.content except Exception as e: logger.error(f"Error sending prompt to Groq: {e}") raise ValueError(f"Failed to get response from Groq: {str(e)}") def list_models() -> List[str]: """ List available Groq models. Returns: List of model names """ try: logger.info("Listing Groq models") response = client.models.list() # Extract model IDs models = [model.id for model in response.data] return models except Exception as e: logger.error(f"Error listing Groq models: {e}") # Return some known models if API fails logger.info("Returning hardcoded list of known Groq models") return [ "llama-3.3-70b-versatile", "llama-3.1-70b-versatile", "llama-3.1-8b-versatile", "mixtral-8x7b-32768", "gemma-7b-it", "qwen-2.5-32b" ]

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/disler/just-prompt'

If you have feedback or need assistance with the MCP directory API, please join our Discord server