Skip to main content
Glama

Just Prompt

by disler
google-genai-api-update.md4.42 kB
# Google GenAI SDK v1.22.0 Documentation ## Overview The Google Gen AI SDK provides an interface for developers to integrate Google's generative models into their Python applications. It supports both the Gemini Developer API and Vertex AI APIs. **Latest Version:** 1.22.0 (Released: about 23 hours ago) ## Installation ```bash pip install google-genai ``` ## Key Features ### 1. Client Creation **For Gemini Developer API:** ```python from google import genai client = genai.Client(api_key='GEMINI_API_KEY') ``` **For Vertex AI:** ```python from google import genai client = genai.Client( vertexai=True, project='your-project-id', location='us-central1' ) ``` ### 2. Model Support The SDK supports various models including: - **Gemini 2.0 Flash**: `gemini-2.0-flash-001` - **Text Embedding**: `text-embedding-004` - **Imagen 3.0**: `imagen-3.0-generate-002` (image generation) - **Veo 2.0**: `veo-2.0-generate-001` (video generation) ### 3. Core Capabilities #### Generate Content ```python response = client.models.generate_content( model='gemini-2.0-flash-001', contents='Why is the sky blue?' ) print(response.text) ``` #### Chat Sessions ```python chat = client.chats.create(model='gemini-2.0-flash-001') response = chat.send_message('tell me a story') print(response.text) ``` #### Function Calling The SDK supports automatic Python function calling: ```python def get_current_weather(location: str) -> str: """Returns the current weather.""" return 'sunny' response = client.models.generate_content( model='gemini-2.0-flash-001', contents='What is the weather like in Boston?', config=types.GenerateContentConfig(tools=[get_current_weather]), ) ``` #### JSON Response Schema Supports Pydantic models for structured output: ```python from pydantic import BaseModel class CountryInfo(BaseModel): name: str population: int capital: str response = client.models.generate_content( model='gemini-2.0-flash-001', contents='Give me information for the United States.', config=types.GenerateContentConfig( response_mime_type='application/json', response_schema=CountryInfo, ), ) ``` ### 4. Advanced Features #### Streaming Support ```python for chunk in client.models.generate_content_stream( model='gemini-2.0-flash-001', contents='Tell me a story in 300 words.' ): print(chunk.text, end='') ``` #### Async Support ```python response = await client.aio.models.generate_content( model='gemini-2.0-flash-001', contents='Tell me a story in 300 words.' ) ``` #### Caching ```python cached_content = client.caches.create( model='gemini-2.0-flash-001', config=types.CreateCachedContentConfig( contents=[...], system_instruction='What is the sum of the two pdfs?', display_name='test cache', ttl='3600s', ), ) ``` #### Fine-tuning Supports supervised fine-tuning with different approaches for Vertex AI (GCS) and Gemini Developer API (inline examples). ### 5. API Configuration #### API Version Selection ```python from google.genai import types # For stable API endpoints client = genai.Client( vertexai=True, project='your-project-id', location='us-central1', http_options=types.HttpOptions(api_version='v1') ) ``` #### Proxy Support ```bash export HTTPS_PROXY='http://username:password@proxy_uri:port' export SSL_CERT_FILE='client.pem' ``` ### 6. Error Handling ```python from google.genai import errors try: client.models.generate_content( model="invalid-model-name", contents="What is your name?", ) except errors.APIError as e: print(e.code) # 404 print(e.message) ``` ## Platform Support - **Python Version:** >=3.9 - **Supported Python Versions:** 3.9, 3.10, 3.11, 3.12, 3.13 - **License:** Apache Software License (Apache-2.0) - **Operating System:** OS Independent ## Additional Resources - **Homepage:** https://github.com/googleapis/python-genai - **Documentation:** https://googleapis.github.io/python-genai/ - **PyPI Page:** https://pypi.org/project/google-genai/ ## Recent Updates The v1.22.0 release continues to support the latest Gemini models and maintains compatibility with both Gemini Developer API and Vertex AI platforms. The SDK provides comprehensive support for generative AI tasks including text generation, image generation, video generation, embeddings, and more.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/disler/just-prompt'

If you have feedback or need assistance with the MCP directory API, please join our Discord server