Skip to main content
Glama

MCP Server for Splunk

Apache 2.0
16
  • Apple
  • Linux
workflows-overview.md2.87 kB
## Workflows Overview: AI-Powered Splunk Troubleshooting > Use workflow tools to define, validate, discover, and execute JSON workflows. Legacy “dynamic agent” docs have been replaced by these tools. ### What are workflows? Workflows are structured troubleshooting procedures that: - Encode expert Splunk practices as JSON - Run tasks in parallel phases for 3–5x speedups - Adapt to your context via time window and focus parameters ### Prerequisites - Set OpenAI env vars in `.env` (copy from `env.example`): ```bash OPENAI_API_KEY=your_openai_api_key_here OPENAI_MODEL=gpt-4o OPENAI_TEMPERATURE=0.7 OPENAI_MAX_TOKENS=4000 ``` - Ensure OpenAI dependencies are available: ```bash uv add openai uv add openai-agents ``` ### Lifecycle ```mermaid graph LR A[📋 workflow_requirements] --> B[🛠️ workflow_builder] B --> C[✅ validate/process] C --> D[🚀 workflow_runner] D --> E[📊 Results] A -->|discover| F[📚 list_workflows] style A fill:#fff3e0 style B fill:#f3e5f5 style C fill:#e8f5e8 style D fill:#e3f2fd style E fill:#e8f5e8 style F fill:#e3f2fd ``` ### Tools - `workflow_requirements`: schema, validation rules, best practices - `workflow_builder`: create/edit/validate/process workflows, generate templates - `list_workflows`: discover core and contrib workflow IDs - `workflow_runner`: execute a workflow by ID with context and summarization ### Quick start ```python from src.tools.workflows.list_workflows import create_list_workflows_tool from src.tools.workflows.workflow_runner import WorkflowRunnerTool # Discover lister = create_list_workflows_tool() await lister.execute(ctx, format_type="summary") # Run core performance analysis runner = WorkflowRunnerTool("workflow_runner", "workflows") await runner.execute( ctx=ctx, workflow_id="performance_analysis", earliest_time="-24h", latest_time="now", complexity_level="moderate", ) ``` ### Core workflows - `missing_data_troubleshooting`: Systematic, 10-step missing data analysis based on Splunk guidance. Background reference: “Troubleshoot inputs with metrics.log” (`https://help.splunk.com/en/splunk-enterprise/administer/troubleshoot/10.0/splunk-enterprise-log-files/troubleshoot-inputs-with-metrics.log`). - `performance_analysis`: Resource and search performance diagnostics. ### Benefits - **Consistency**: Encodes best-practice procedures - **Speed**: Parallel phases accelerate diagnostics - **Coverage**: Reduces human error and missed steps - **Automation**: Reuse for routine tasks with rich summaries ### Where workflows live - Core: `src/tools/workflows/core/` - Contrib: `contrib/workflows/<category>/<workflow_id>.json` ### See also - `README.md` in this folder for a concise quick start - `workflow_runner_guide.md` for detailed execution parameters and progress behavior

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/deslicer/mcp-for-splunk'

If you have feedback or need assistance with the MCP directory API, please join our Discord server