Skip to main content
Glama

analyze_data_quality

Detect time gaps, price outliers, null values, and duplicate records in market data to assess quality with a score and detailed issue breakdown.

Instructions

Analyze data quality and detect issues in market data.

Detects:

  • Time gaps in data

  • Price outliers (>3 standard deviations)

  • Null values and missing data

  • Duplicate records

Returns:

  • Quality score (0-100)

  • List of issues and warnings

  • Detailed breakdown of problems

Example:

  • First retrieve data with get_historical_data

  • Then analyze_data_quality(dataset="GLBX.MDP3", symbols="ES.FUT", start="2024-01-15", end="2024-01-15")

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
datasetYesDataset name
symbolsYesComma-separated list of symbols
startYesStart date in YYYY-MM-DD format
endYesEnd date in YYYY-MM-DD format
schemaNoData schema (default: 'trades')trades
limitNoMaximum records to analyze (default: 10000)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/deepentropy/databento-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server