Skip to main content
Glama

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault
DATABENTO_API_KEYYesDatabento API key (required)
DATABENTO_DATA_DIRNoRestrict file operations to directoryCurrent directory
DATABENTO_LOG_LEVELNoLogging level (DEBUG, INFO, WARNING, ERROR)INFO
DATABENTO_METRICS_ENABLEDNoEnable metrics collectiontrue

Capabilities

Features and capabilities supported by this server

CapabilityDetails
tools
{
  "listChanged": false
}
prompts
{
  "listChanged": false
}
resources
{
  "subscribe": false,
  "listChanged": false
}
experimental
{}

Tools

Functions exposed to the LLM to take actions

NameDescription
health_check

Check the health and connectivity of the Databento API. Use this to diagnose connection issues or verify the server is working properly.

get_historical_data

Retrieve historical market data for symbols from Databento.

Examples:

  • Get ES futures trades: dataset="GLBX.MDP3", symbols="ES.FUT", start="2024-01-15", end="2024-01-15", schema="trades"

  • Get AAPL OHLCV bars: dataset="XNAS.ITCH", symbols="AAPL", start="2024-01-01", end="2024-01-31", schema="ohlcv-1m"

  • Get BTC order book: dataset="GLBX.MDP3", symbols="BTC.FUT", schema="mbp-10"

Tips:

  • Use explain=true to preview query without executing

  • Use force_refresh=true to bypass cache

  • Start with small date ranges and use limit parameter

get_symbol_metadata

Get metadata for symbols including symbology mappings and instrument definitions

search_instruments

Search for instruments in a dataset

list_datasets

List all available datasets from Databento

clear_cache

Clear the API response cache

get_cost

Estimate the cost of a historical data query before executing it

get_live_data

Subscribe to real-time market data for a limited duration

resolve_symbols

Resolve symbols between different symbology types

submit_batch_job

Submit a batch data download job for large historical datasets

list_batch_jobs

List all batch jobs with their current status

get_batch_job_files

Get download information for a completed batch job

get_session_info

Identify the current trading session based on time

list_publishers

List data publishers with their details

list_fields

List fields available for a specific schema

get_dataset_range

Get the available date range for a dataset

read_dbn_file

Read and parse a DBN file, returning the records as structured data

get_dbn_metadata

Get only the metadata from a DBN file without reading all records

write_dbn_file

Write historical data query results directly to a DBN file

convert_dbn_to_parquet

Convert a DBN file to Parquet format

export_to_parquet

Query historical data and export directly to Parquet format

read_parquet_file

Read a Parquet file and return the data

get_metrics

Get server performance metrics and usage statistics.

Returns:

  • Server uptime

  • API call counts

  • Cache hit/miss rates

  • Per-tool latency and success rates

Example: get_metrics(reset=false) to view current stats

get_account_status

Get comprehensive server status and account information.

Returns:

  • Server uptime and health

  • Cache statistics (hit rate, entries)

  • API usage metrics

  • Tool usage breakdown

  • Memory and performance stats

Example: get_account_status() for a full server overview

quick_analysis

One-call comprehensive analysis of a symbol.

Combines: metadata + cost estimate + sample data + trading session info + data quality check.

Example:

  • quick_analysis(dataset="GLBX.MDP3", symbol="ES.FUT", date="2024-01-15")

  • quick_analysis(dataset="XNAS.ITCH", symbol="AAPL", date="2024-01-15", schema="ohlcv-1m")

Returns:

  • Symbol metadata and instrument info

  • Cost estimate for full-day data

  • Sample of recent trades/bars

  • Current trading session context

  • Data quality assessment

analyze_data_quality

Analyze data quality and detect issues in market data.

Detects:

  • Time gaps in data

  • Price outliers (>3 standard deviations)

  • Null values and missing data

  • Duplicate records

Returns:

  • Quality score (0-100)

  • List of issues and warnings

  • Detailed breakdown of problems

Example:

  • First retrieve data with get_historical_data

  • Then analyze_data_quality(dataset="GLBX.MDP3", symbols="ES.FUT", start="2024-01-15", end="2024-01-15")

list_schemas

List all available data schemas from Databento.

Returns:

  • List of all available schemas with descriptions

  • Includes trades, OHLCV bars, order book, and reference data schemas

Example: list_schemas()

list_unit_prices

Get current pricing information per dataset/schema combination.

Parameters:

  • dataset (optional) - Filter by dataset name (e.g., "GLBX.MDP3")

Returns:

  • List of unit prices showing cost per GB or per record

  • Helps understand pricing before querying

Example: list_unit_prices(dataset="GLBX.MDP3")

cancel_batch_job

Cancel a pending or processing batch job.

Parameters:

  • job_id (required) - The batch job ID to cancel

Returns:

  • Success/failure status

  • Final job state

  • Message explaining the result

Example: cancel_batch_job(job_id="JOB-12345")

download_batch_files

Download completed batch job files to a local directory.

Parameters:

  • job_id (required) - The batch job ID

  • output_dir (required) - Directory to save downloaded files

  • overwrite (optional, default: false) - Whether to overwrite existing files

Returns:

  • List of downloaded files with paths and sizes

  • Total download size

  • Success/failure status for each file

Example: download_batch_files(job_id="JOB-12345", output_dir="/data/downloads")

Prompts

Interactive templates invoked by user choice

NameDescription
market-data-workflowStep-by-step guide for retrieving market data from Databento
cost-aware-queryHow to estimate costs before running expensive queries
troubleshootingDiagnose and resolve common issues with the Databento MCP server

Resources

Contextual data attached and managed by the client

NameDescription
Databento Schema ReferenceDocumentation of available data schemas
Databento Dataset ReferenceCommon datasets and their descriptions
Error Code ReferenceComplete list of error codes and their meanings

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/deepentropy/databento-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server