Skip to main content
Glama

PitchLense MCP

README.md14.4 kB
# PitchLense MCP - Professional Startup Risk Analysis Package [![Python Version](https://img.shields.io/badge/python-3.8%2B-blue.svg)](https://www.python.org/downloads/) [![Python docs](https://readthedocs.org/projects/pitchlense-mcp/badge/?version=latest)](https://pitchlense-mcp.readthedocs.io/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![PyPI Version](https://img.shields.io/pypi/v/pitchlense-mcp.svg)](https://pypi.org/project/pitchlense-mcp/) [![Build Status](https://img.shields.io/github/workflow/status/pitchlense/pitchlense-mcp/CI)](https://github.com/connectaman/Pitchlense-mcp/actions) A comprehensive Model Context Protocol (MCP) package for analyzing startup investment risks using AI-powered assessment across multiple risk categories. Built with FastMCP and Google Gemini AI. PitchLense is a comprehensive AI-powered startup analysis platform that provides detailed risk assessment and growth potential evaluation for early-stage ventures. The platform analyzes multiple dimensions of startup risk and provides actionable insights for investors, founders, and stakeholders. ## 🔗 Quick Links - Website Link : https://www.pitchlense.com - Web App Github Repo: https://github.com/connectaman/PitchLense <div align="center"> [![YouTube Tutorial](https://img.shields.io/badge/📺_YouTube_Tutorial-red?style=for-the-badge&logo=youtube&logoColor=white)](https://youtu.be/XUuLeXaEIdI) [![AppWebsite](https://img.shields.io/badge/🌐_Website-black?style=for-the-badge&logo=googlechrome&logoColor=white)](https://www.pitchlense.com/) [![GitHub Repository](https://img.shields.io/badge/💻_GitHub-black?style=for-the-badge&logo=github&logoColor=white)](https://github.com/connectaman/PitchLense) [![MCP Repository](https://img.shields.io/badge/🔧_MCP_Repository-black?style=for-the-badge&logo=github&logoColor=white)](https://github.com/connectaman/Pitchlense-mcp) [![PyPI Package](https://img.shields.io/badge/🐍_PyPI_Package-3776AB?style=for-the-badge&logo=python&logoColor=white)](https://pypi.org/project/pitchlense-mcp/) [![Documentation](https://img.shields.io/badge/📚_Documentation-FFD43B?style=for-the-badge&logo=readthedocs&logoColor=black)](https://pitchlense-mcp.readthedocs.io/en/latest/api.html) </div> ### 📖 How to Use PitchLense Watch our comprehensive tutorial video to learn how to use PitchLense effectively: [![How to use PitchLense](https://img.youtube.com/vi/XUuLeXaEIdI/0.jpg)](https://youtu.be/XUuLeXaEIdI) **Click the image above to watch the tutorial on YouTube** ## 🚀 Features ### Individual Risk Analysis Tools - **Market Risk Analyzer** - TAM, growth rate, competition, differentiation - **Product Risk Analyzer** - Development stage, market fit, technical feasibility, IP protection - **Team Risk Analyzer** - Leadership depth, founder stability, skill gaps, credibility - **Financial Risk Analyzer** - Metrics consistency, burn rate, projections, CAC/LTV - **Customer Risk Analyzer** - Traction levels, churn rate, retention, customer concentration - **Operational Risk Analyzer** - Supply chain, GTM strategy, efficiency, execution - **Competitive Risk Analyzer** - Incumbent strength, entry barriers, defensibility - **Legal Risk Analyzer** - Regulatory environment, compliance, legal disputes - **Exit Risk Analyzer** - Exit pathways, sector activity, late-stage appeal ### Comprehensive Analysis Tools & Data Sources - **Comprehensive Risk Scanner** - Full analysis across all risk categories - **Quick Risk Assessment** - Fast assessment of critical risk areas - **Peer Benchmarking** - Compare metrics against sector/stage peers - **SerpAPI Google News Tool** - Fetches first-page Google News with URLs and thumbnails - **Perplexity Search Tool** - Answers with cited sources and URLs ## 📊 Risk Categories Covered | Category | Key risks | | --- | --- | | Market | Small/overstated TAM; weak growth; crowded space; limited differentiation; niche dependence | | Product | Early stage; unclear PMF; technical uncertainty; weak IP; poor scalability | | Team/Founder | Single-founder risk; churn; skill gaps; credibility; misaligned incentives | | Financial | Inconsistent metrics; high burn/short runway; optimistic projections; unfavorable CAC/LTV; low margins | | Customer & Traction | Low traction; high churn; low retention; no marquee customers; concentration risk | | Operational | Fragile supply chain; unclear GTM; operational inefficiency; poor execution | | Competitive | Strong incumbents; low entry barriers; weak defensibility; saturation | | Legal & Regulatory | Grey/untested areas; compliance gaps; disputes; IP risks | | Exit | Unclear pathways; low sector exit activity; weak late‑stage appeal | ## 🛠️ Installation ### From PyPI (Recommended) ```bash pip install pitchlense-mcp ``` ### From Source ```bash git clone https://github.com/pitchlense/pitchlense-mcp.git cd pitchlense-mcp pip install -e . ``` ### Development Installation ```bash git clone https://github.com/pitchlense/pitchlense-mcp.git cd pitchlense-mcp pip install -e ".[dev]" ``` ## 🔑 Setup ### 1. Get Gemini API Key 1. Visit [Google AI Studio](https://makersuite.google.com/app/apikey) 2. Create a new API key 3. Copy the API key ### 2. Create .env ```bash cp .env.template .env # edit .env and fill in keys ``` Supported variables: ``` GEMINI_API_KEY= SERPAPI_API_KEY= PERPLEXITY_API_KEY= ``` ## 🚀 Usage ### Command Line Interface #### Run Comprehensive Analysis ```bash # Create sample data pitchlense-mcp sample --output my_startup.json # Run comprehensive analysis pitchlense-mcp analyze --input my_startup.json --output results.json ``` #### Run Quick Assessment ```bash pitchlense-mcp quick --input my_startup.json --output quick_results.json ``` #### Start MCP Server ```bash pitchlense-mcp server ``` ### Python API #### Basic Usage (single text input) ```python from pitchlense_mcp import ComprehensiveRiskScanner # Initialize scanner (reads GEMINI_API_KEY from env if not provided) scanner = ComprehensiveRiskScanner() # Provide all startup info as one organized text string startup_info = """ Name: TechFlow Solutions Industry: SaaS/Productivity Software Stage: Series A Business Model: AI-powered workflow automation for SMBs; subscription pricing. Financials: MRR: $45k; Burn: $35k; Runway: 8 months; LTV/CAC: 13.3 Traction: 250 customers; 1,200 MAU; Churn: 5% monthly; NRR: 110% Team: CEO: Sarah Chen; CTO: Michael Rodriguez; Team size: 12 Market & Competition: TAM: $12B; Competitors: Zapier, Power Automate; Growth: 15% YoY """ # Run comprehensive analysis results = scanner.comprehensive_startup_risk_analysis(startup_info) print(f"Overall Risk Level: {results['overall_risk_level']}") print(f"Overall Risk Score: {results['overall_score']}/10") print(f"Investment Recommendation: {results['investment_recommendation']}") ``` #### Individual Risk Analysis (text input) ```python from pitchlense_mcp import MarketRiskAnalyzer, GeminiLLM # Initialize components llm_client = GeminiLLM(api_key="your_api_key") market_analyzer = MarketRiskAnalyzer(llm_client) # Analyze market risks market_results = market_analyzer.analyze(startup_info) print(f"Market Risk Level: {market_results['overall_risk_level']}") ``` ### MCP Server Integration The package provides a complete MCP server that can be integrated with MCP-compatible clients: ```python from pitchlense_mcp import ComprehensiveRiskScanner # Start MCP server scanner = ComprehensiveRiskScanner() scanner.run() ``` ## 📋 Input Data Format The primary input is a single organized text string containing all startup information (details, metrics, traction, news, competitive landscape, etc.). This is the format used by all analyzers and MCP tools. Example text input: ``` Name: AcmeAI Industry: Fintech (Lending) Stage: Seed Summary: Building AI-driven credit risk models for SMB lending; initial pilots with 5 lenders. Financials: MRR: $12k; Burn: $60k; Runway: 10 months; Gross Margin: 78% Traction: 200 paying SMBs; 30% MoM growth; Churn: 3% monthly; CAC: $220; LTV: $2,100 Team: Founders: Jane Doe (ex-Square), John Lee (ex-Stripe); Team size: 9 Market & Competition: TAM: $25B; Competitors: Blend, Upstart; Advantage: faster underwriting via proprietary data partnerships ``` Tip: See `examples/text_input_example.py` for a complete end-to-end script and JSON export of results. ## 📊 Output Format All tools return structured JSON responses with: ```json { "startup_name": "Startup Name", "overall_risk_level": "low|medium|high|critical", "overall_score": 1-10, "risk_categories": [ { "category_name": "Risk Category", "overall_risk_level": "low|medium|high|critical", "category_score": 1-10, "indicators": [ { "indicator": "Specific risk factor", "risk_level": "low|medium|high|critical", "score": 1-10, "description": "Detailed risk description", "recommendation": "Mitigation action" } ], "summary": "Category summary" } ], "key_concerns": ["Top 5 concerns"], "investment_recommendation": "Investment advice", "confidence_score": 0.0-1.0, "analysis_metadata": { "total_categories_analyzed": 9, "successful_analyses": 9, "analysis_timestamp": "2024-01-01T00:00:00Z" } } ``` ## 🎯 Use Cases - **Investor Due Diligence** - Comprehensive risk assessment for investment decisions - **Startup Self-Assessment** - Identify and mitigate key risk areas - **Portfolio Risk Management** - Assess risk across startup portfolio - **Accelerator/Incubator Screening** - Evaluate startup applications - **M&A Risk Analysis** - Assess acquisition targets - **Research & Analysis** - Academic and industry research on startup risks ## 🏗️ Architecture ### Package Structure ``` pitchlense-mcp/ ├── pitchlense_mcp/ │ ├── __init__.py │ ├── cli.py # Command-line interface │ ├── core/ # Core functionality │ │ ├── __init__.py │ │ ├── base.py # Base classes │ │ ├── gemini_client.py # Gemini AI integration │ │ └── comprehensive_scanner.py │ ├── models/ # Data models │ │ ├── __init__.py │ │ └── risk_models.py │ ├── analyzers/ # Individual risk analyzers │ │ ├── __init__.py │ │ ├── market_risk.py │ │ ├── product_risk.py │ │ ├── team_risk.py │ │ ├── financial_risk.py │ │ ├── customer_risk.py │ │ ├── operational_risk.py │ │ ├── competitive_risk.py │ │ ├── legal_risk.py │ │ └── exit_risk.py │ └── utils/ # Utility functions ├── tests/ # Test suite ├── docs/ # Documentation ├── examples/ # Example usage ├── setup.py ├── pyproject.toml ├── requirements.txt └── README.md ``` ### Key Components 1. **Base Classes** (`core/base.py`) - `BaseLLM` - Abstract base for LLM integrations - `BaseRiskAnalyzer` - Base class for all risk analyzers - `BaseMCPTool` - Base class for MCP tools 2. **Gemini Integration** (`core/gemini_client.py`) - `GeminiLLM` - Main LLM client - `GeminiTextGenerator` - Text generation - `GeminiImageAnalyzer` - Image analysis - `GeminiVideoAnalyzer` - Video analysis - `GeminiAudioAnalyzer` - Audio analysis - `GeminiDocumentAnalyzer` - Document analysis 3. **Risk Analyzers** (`analyzers/`) - Individual analyzers for each risk category - Consistent interface and output format - Extensible architecture 4. **Models** (`models/risk_models.py`) - Pydantic models for type safety - Structured data validation - Clear data contracts ## 🔧 Development ### Setup Development Environment ```bash git clone https://github.com/pitchlense/pitchlense-mcp.git cd pitchlense-mcp pip install -e ".[dev]" pre-commit install ``` ### Run Tests ```bash # Create and activate a virtual environment (recommended) python3 -m venv .venv source .venv/bin/activate # Install dev extras (pytest, pytest-cov, linters) pip install -e ".[dev]" # Run tests with coverage and avoid global plugin conflicts PYTEST_DISABLE_PLUGIN_AUTOLOAD=1 pytest -q -p pytest_cov ``` Notes: - Coverage reports are written to `htmlcov/index.html` and `coverage.xml`. - If you see errors about unknown `--cov` options, ensure you passed `-p pytest_cov` when `PYTEST_DISABLE_PLUGIN_AUTOLOAD=1` is set. ### Example Scripts ```bash python examples/basic_usage.py python examples/text_input_example.py ``` ### Code Formatting ```bash black pitchlense_mcp/ flake8 pitchlense_mcp/ mypy pitchlense_mcp/ ``` ### Build Package ```bash python -m build ``` ## 📝 Notes - All risk scores are on a 1-10 scale (1 = lowest risk, 10 = highest risk) - Risk levels: low (1-3), medium (4-6), high (7-8), critical (9-10) - Individual tools can be used independently or combined for comprehensive analysis - The system handles API failures gracefully with fallback responses - All tables and structured data are returned in JSON format - Professional package architecture with proper separation of concerns ## 🤝 Contributing We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details. 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests 5. Submit a pull request ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🆘 Support - **Documentation**: [https://pitchlense-mcp.readthedocs.io/](https://pitchlense-mcp.readthedocs.io/) - **Issues**: [GitHub Issues](https://github.com/pitchlense/pitchlense-mcp/issues) - **Email**: connectamanulla@gmail.com ## 🙏 Acknowledgments - Google Gemini AI for providing the underlying AI capabilities - FastMCP for the Model Context Protocol implementation - The open-source community for inspiration and tools --- **PitchLense MCP** - Making startup risk analysis accessible, comprehensive, and AI-powered.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/connectaman/Pitchlense-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server