Skip to main content
Glama
by clipsense
financial_simulation_300.py4.33 kB
#!/usr/bin/env python3 """Financial simulation with 300 analysis tier""" # ACTUAL COSTS from end-to-end testing test_costs = [0.0208, 0.0281, 0.0242] avg_cost_per_analysis = sum(test_costs) / len(test_costs) print("="*80) print("CLIPSENSE FINANCIAL SIMULATION - 300 ANALYSIS TIER") print("="*80) print(f"\nActual cost per analysis: ${avg_cost_per_analysis:.4f}") print() # Pricing options for 300 analyses/month pricing_options = [ ("Conservative", 79, 300), ("Standard", 99, 300), ("Competitive", 149, 300), ("Premium", 199, 300), ] print("TEAM TIER: 300 ANALYSES/MONTH - PRICING OPTIONS:") print("="*80) for option_name, price, limit in pricing_options: # Best case: user uses full allowance full_usage_cost = limit * avg_cost_per_analysis full_usage_profit = price - full_usage_cost full_usage_margin = (full_usage_profit / price * 100) # Average case: user uses 60% of allowance avg_usage = int(limit * 0.6) avg_usage_cost = avg_usage * avg_cost_per_analysis avg_usage_profit = price - avg_usage_cost avg_usage_margin = (avg_usage_profit / price * 100) # Light case: user uses 30% of allowance light_usage = int(limit * 0.3) light_usage_cost = light_usage * avg_cost_per_analysis light_usage_profit = price - light_usage_cost light_usage_margin = (light_usage_profit / price * 100) print(f"\n{option_name.upper()} - ${price}/mo for {limit} analyses:") print("-" * 80) print(f" Full usage ({limit} analyses): Cost=${full_usage_cost:6.2f} | Profit=${full_usage_profit:7.2f} | Margin={full_usage_margin:5.1f}%") print(f" Avg usage ({avg_usage} analyses): Cost=${avg_usage_cost:6.2f} | Profit=${avg_usage_profit:7.2f} | Margin={avg_usage_margin:5.1f}%") print(f" Light usage ({light_usage} analyses): Cost=${light_usage_cost:6.2f} | Profit=${light_usage_profit:7.2f} | Margin={light_usage_margin:5.1f}%") # Complete tier structure comparison print("\n" + "="*80) print("RECOMMENDED COMPLETE TIER STRUCTURE:") print("="*80) tiers = [ ("FREE", 0, 3), ("PRO", 29, 50), ("TEAM", 99, 300), ("ENTERPRISE", 299, 1000), ] print(f"\n{'TIER':<12} | {'PRICE':>10} | {'LIMIT':>8} | {'COST (full)':>12} | {'PROFIT':>10} | {'MARGIN':>8}") print("-" * 80) for tier_name, price, limit in tiers: cost = limit * avg_cost_per_analysis profit = price - cost margin = (profit / price * 100) if price > 0 else 0 limit_display = f"{limit:,}" status = "✅" if profit > 0 else "❌" print(f"{tier_name:<12} | ${price:>9} | {limit_display:>8} | ${cost:>11.2f} | ${profit:>9.2f} | {margin:>6.1f}% {status}") print("\n" + "="*80) print("COMPETITIVE ANALYSIS:") print("="*80) competitors = [ ("Loom Pro", 15, "Unlimited", "Video messaging - different use case"), ("BugSnag Team", 99, "Unlimited", "Error tracking - no AI analysis"), ("Sentry Team", 26, "Unlimited", "Error monitoring - different category"), ("RunwayML Standard", 12, "125 videos", "AI video - limited processing"), ] print("\n") for name, price, limit, notes in competitors: print(f"{name:<20} ${price:>3}/mo | {limit:<15} | {notes}") print("\n" + "="*80) print("FINAL RECOMMENDATION:") print("="*80) print(""" SAFEST PROFITABLE STRUCTURE: - FREE: $0/mo | 3 analyses | Acquisition (7¢ cost) - PRO: $29/mo | 50 analyses | $27.78 profit (96% margin) - TEAM: $99/mo | 300 analyses | $91.69 profit (93% margin) ⭐ - ENTERPRISE: $299/mo | 1,000 analyses | $274.63 profit (92% margin) - CUSTOM: Quote | 1,000+ analyses | Contact sales WHY $99 for 300? ✅ 93% margin - highly profitable ✅ 6x value vs PRO (300 vs 50 analyses) ✅ Below break-even threshold (4,063 analyses) ✅ Room for heavy users without risk ✅ Competitive vs RunwayML ($12 for 125 videos) ✅ Positioned as premium AI debugging tool COMPETITIVE POSITIONING: - AI video analysis is unique - no direct competitors - Priced higher than basic video tools (justified by AI) - Lower than enterprise error tools (accessible to startups) - Room to add Enterprise tier for larger teams GROWTH PATH: 1. Launch with FREE (3), PRO (50), TEAM (300) 2. Monitor usage patterns for 30 days 3. Add ENTERPRISE tier if 10+ teams hit TEAM limit 4. Consider usage-based pricing above 1,000 analyses """) print("="*80)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/clipsense/-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server