Skip to main content
Glama
clarkemn

prisma-cloud-docs-mcp-server

search_prisma_api_docs

Find specific information in Prisma Cloud API documentation by searching with keywords to get relevant documentation sections.

Instructions

Search Prisma Cloud API documentation

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYes

Implementation Reference

  • Primary handler function for the 'search_prisma_api_docs' MCP tool. Registered with @mcp.tool() decorator. It invokes the DocumentationIndexer.search_docs method filtered to the 'prisma_api' site and serializes the top results to JSON.
    @mcp.tool() async def search_prisma_api_docs(query: str) -> str: """Search Prisma Cloud API documentation""" results = await indexer.search_docs(query, site='prisma_api') return json.dumps(results, indent=2)
  • Duplicate handler function (likely for HTTP deployment variant) for the 'search_prisma_api_docs' MCP tool. Identical implementation to server.py version.
    @mcp.tool() async def search_prisma_api_docs(query: str) -> str: """Search Prisma Cloud API documentation""" results = await indexer.search_docs(query, site='prisma_api') return json.dumps(results, indent=2)
  • Core helper method in DocumentationIndexer class that implements the document search logic: relevance scoring based on title/content matches, snippet extraction, and returns top 10 results. Called by the tool handler with site='prisma_api'.
    async def search_docs(self, query: str, site: str = None) -> List[Dict]: """Search indexed documentation""" if not self.cached_pages: return [] query_lower = query.lower() results = [] for url, page in self.cached_pages.items(): # Filter by site if specified if site and page.site != site: continue # Calculate relevance score score = 0 title_lower = page.title.lower() content_lower = page.content.lower() # Higher score for title matches if query_lower in title_lower: score += 10 # Even higher for exact title matches if query_lower == title_lower: score += 20 # Score for content matches content_matches = content_lower.count(query_lower) score += content_matches * 2 # Score for partial word matches in title query_words = query_lower.split() for word in query_words: if word in title_lower: score += 5 if word in content_lower: score += 1 if score > 0: # Extract snippet around first match snippet = self._extract_snippet(page.content, query, max_length=200) results.append({ 'title': page.title, 'url': page.url, 'site': page.site, 'snippet': snippet, 'score': score }) # Sort by relevance score (highest first) and limit results results.sort(key=lambda x: x['score'], reverse=True) return results[:10]
  • Dataclass used by DocumentationIndexer to cache indexed documentation pages, including expiration logic.
    @dataclass class CachedPage: title: str content: str url: str site: str timestamp: float ttl: float = 3600 # 1 hour default TTL @property def is_expired(self) -> bool: return time.time() > self.timestamp + self.ttl

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/clarkemn/prisma-cloud-docs-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server