Skip to main content
Glama
clarkemn

prisma-cloud-docs-mcp-server

search_all_docs

Search across all Prisma Cloud documentation sites to find answers to your questions about the platform.

Instructions

Search across all Prisma Cloud documentation sites.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
queryYes

Implementation Reference

  • The handler function for the 'search_all_docs' MCP tool. It is decorated with @mcp.tool() for registration and executes the core logic by delegating to the indexer's search_docs method, serializing results to JSON.
    @mcp.tool() async def search_all_docs(query: str) -> str: """Search across all Prisma Cloud documentation sites.""" results = await indexer.search_docs(query) return json.dumps(results, indent=2)
  • Identical handler function for the 'search_all_docs' MCP tool in server.py variant.
    @mcp.tool() async def search_all_docs(query: str) -> str: """Search across all Prisma Cloud documentation sites.""" results = await indexer.search_docs(query) return json.dumps(results, indent=2)
  • Core search logic in DocumentationIndexer.search_docs method, called by the tool handler. Performs relevance scoring on cached pages and returns top 10 results.
    async def search_docs(self, query: str, site: str = None) -> List[Dict]: """Search indexed documentation""" if not self.cached_pages: return [] query_lower = query.lower() results = [] for url, page in self.cached_pages.items(): # Filter by site if specified if site and page.site != site: continue # Calculate relevance score score = 0 title_lower = page.title.lower() content_lower = page.content.lower() # Higher score for title matches if query_lower in title_lower: score += 10 # Even higher for exact title matches if query_lower == title_lower: score += 20 # Score for content matches content_matches = content_lower.count(query_lower) score += content_matches * 2 # Score for partial word matches in title query_words = query_lower.split() for word in query_words: if word in title_lower: score += 5 if word in content_lower: score += 1 if score > 0: # Extract snippet around first match snippet = self._extract_snippet(page.content, query, max_length=200) results.append({ 'title': page.title, 'url': page.url, 'site': page.site, 'snippet': snippet, 'score': score }) # Sort by relevance score (highest first) and limit results results.sort(key=lambda x: x['score'], reverse=True) return results[:10]
  • Core search logic in DocumentationIndexer.search_docs method (identical to src/main.py).
    async def search_docs(self, query: str, site: str = None) -> List[Dict]: """Search indexed documentation""" if not self.cached_pages: return [] query_lower = query.lower() results = [] for url, page in self.cached_pages.items(): # Filter by site if specified if site and page.site != site: continue # Calculate relevance score score = 0 title_lower = page.title.lower() content_lower = page.content.lower() # Higher score for title matches if query_lower in title_lower: score += 10 # Even higher for exact title matches if query_lower == title_lower: score += 20 # Score for content matches content_matches = content_lower.count(query_lower) score += content_matches * 2 # Score for partial word matches in title query_words = query_lower.split() for word in query_words: if word in title_lower: score += 5 if word in content_lower: score += 1 if score > 0: # Extract snippet around first match snippet = self._extract_snippet(page.content, query, max_length=200) results.append({ 'title': page.title, 'url': page.url, 'site': page.site, 'snippet': snippet, 'score': score }) # Sort by relevance score (highest first) and limit results results.sort(key=lambda x: x['score'], reverse=True) return results[:10]
  • The DocumentationIndexer class initialization, defining caches and base URLs used by the search functionality.
    class DocumentationIndexer:

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/clarkemn/prisma-cloud-docs-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server