Skip to main content
Glama

particle_swarm_optimization

Optimize spacecraft trajectories by solving complex aerospace engineering problems with particle swarm optimization algorithms.

Instructions

Optimize spacecraft trajectory using particle swarm optimization.

Args: optimization_problem: Problem definition (objective, constraints, variables) pso_parameters: Optional PSO parameters (n_particles, iterations, etc.)

Returns: JSON string with optimization results

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
optimization_problemYes
pso_parametersNo

Implementation Reference

  • Handler function that implements the MCP tool logic for particle_swarm_optimization. It delegates to an external trajopt implementation (which appears to be missing) or returns an error message with JSON formatting.
    def particle_swarm_optimization( optimization_problem: dict, pso_parameters: dict | None = None ) -> str: """Optimize spacecraft trajectory using particle swarm optimization. Args: optimization_problem: Problem definition (objective, constraints, variables) pso_parameters: Optional PSO parameters (n_particles, iterations, etc.) Returns: JSON string with optimization results """ try: from ..integrations.trajopt import particle_swarm_optimization as _pso_optimize result = _pso_optimize(optimization_problem, pso_parameters or {}) return json.dumps(result, indent=2) except ImportError: return ( "Particle swarm optimization not available - install optimization packages" ) except Exception as e: logger.error(f"PSO optimization error: {str(e)}", exc_info=True) return f"PSO optimization error: {str(e)}"
  • Registers the particle_swarm_optimization function as an MCP tool in the FastMCP server.
    mcp.tool(particle_swarm_optimization)
  • Imports the particle_swarm_optimization tool from the optimization module for registration.
    from .tools.optimization import ( genetic_algorithm_optimization, monte_carlo_uncertainty_analysis, optimize_thrust_profile, particle_swarm_optimization, porkchop_plot_analysis, trajectory_sensitivity_analysis, )

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cheesejaguar/aerospace-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server