Skip to main content
Glama

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault

No arguments

Tools

Functions exposed to the LLM to take actions

NameDescription
search_airports

Search for airports by IATA code or city name.

Args: query: IATA code (e.g., 'SJC') or city name (e.g., 'San Jose') country: Optional ISO country code to filter by (e.g., 'US', 'JP') query_type: Type of query - 'iata' for IATA codes, 'city' for city names, 'auto' to detect

Returns: Formatted string with airport information

plan_flight

Plan a flight route between two airports with performance estimates.

Args: departure: Dict with departure info (city, country, iata) arrival: Dict with arrival info (city, country, iata) aircraft: Optional aircraft config (ac_type, cruise_alt_ft, route_step_km) route_options: Optional route options

Returns: JSON string with flight plan details

calculate_distance

Calculate great circle distance between two points.

Args: lat1: Latitude of first point in degrees lon1: Longitude of first point in degrees lat2: Latitude of second point in degrees lon2: Longitude of second point in degrees

Returns: JSON string with distance information

get_aircraft_performance

Get performance estimates for an aircraft type (requires OpenAP).

Args: aircraft_type: ICAO aircraft type code (e.g., 'A320', 'B737') distance_km: Flight distance in kilometers cruise_altitude_ft: Cruise altitude in feet

Returns: JSON string with performance estimates or error message

get_system_status

Get system status and capabilities.

Returns: JSON string with system status information

get_atmosphere_profile

Get atmospheric properties (pressure, temperature, density) at specified altitudes using ISA model.

Args: altitudes_m: List of altitudes in meters model_type: Atmospheric model type ('ISA' for standard, 'enhanced' for extended)

Returns: Formatted string with atmospheric profile data

wind_model_simple

Calculate wind speeds at different altitudes using logarithmic or power law models.

Args: altitudes_m: List of altitudes in meters surface_wind_speed_ms: Wind speed at 10m reference height in m/s surface_wind_direction_deg: Wind direction at surface in degrees (0=North, 90=East) model_type: Wind model type ('logarithmic' or 'power_law') roughness_length_m: Surface roughness length in meters

Returns: Formatted string with wind profile data

transform_frames

Transform coordinates between reference frames (ECEF, ECI, ITRF, GCRS, GEODETIC).

Args: coordinates: Dict with coordinate data (format depends on frame) from_frame: Source reference frame to_frame: Target reference frame epoch_utc: Optional epoch for time-dependent transformations (ISO format)

Returns: JSON string with transformed coordinates

geodetic_to_ecef

Convert geodetic coordinates (lat/lon/alt) to Earth-centered Earth-fixed (ECEF) coordinates.

Args: latitude_deg: Latitude in degrees (-90 to 90) longitude_deg: Longitude in degrees (-180 to 180) altitude_m: Altitude above WGS84 ellipsoid in meters

Returns: JSON string with ECEF coordinates

ecef_to_geodetic

Convert ECEF coordinates to geodetic (lat/lon/alt) coordinates.

Args: x_m: X coordinate in meters y_m: Y coordinate in meters z_m: Z coordinate in meters

Returns: JSON string with geodetic coordinates

wing_vlm_analysis

Analyze wing aerodynamics using Vortex Lattice Method or simplified lifting line theory.

Args: wing_config: Wing configuration (span_m, chord_m, sweep_deg, etc.) flight_conditions: Flight conditions (airspeed_ms, altitude_m, alpha_deg) analysis_options: Optional analysis settings

Returns: Formatted string with aerodynamic analysis results

airfoil_polar_analysis

Generate airfoil polar data (CL, CD, CM vs alpha) using database or advanced methods.

Args: airfoil_name: Airfoil name (e.g., 'NACA2412', 'NACA0012') reynolds_number: Reynolds number mach_number: Mach number alpha_range_deg: Optional angle of attack range, defaults to [-10, 20] deg

Returns: Formatted string with airfoil polar data

calculate_stability_derivatives

Calculate basic longitudinal stability derivatives for a wing.

Args: wing_config: Wing configuration parameters flight_conditions: Flight conditions

Returns: JSON string with stability derivatives

get_airfoil_database

Get available airfoil database with aerodynamic coefficients.

Returns: JSON string with airfoil database

propeller_bemt_analysis

Analyze propeller performance using Blade Element Momentum Theory.

Args: propeller_geometry: Propeller geometry (diameter_m, pitch_m, num_blades, etc.) operating_conditions: Operating conditions (rpm_list, velocity_ms, altitude_m) analysis_options: Optional analysis settings

Returns: Formatted string with propeller performance analysis

uav_energy_estimate

Estimate UAV flight time and energy consumption for mission planning.

Args: uav_config: UAV configuration parameters battery_config: Battery configuration parameters mission_profile: Optional mission profile parameters

Returns: Formatted string with energy analysis results

get_propeller_database

Get available propeller database with geometric and performance data.

Returns: JSON string with propeller database

rocket_3dof_trajectory

Calculate 3DOF rocket trajectory using numerical integration.

Args: rocket_geometry: Rocket geometry parameters launch_conditions: Launch conditions (launch_angle_deg, launch_site, etc.) simulation_options: Optional simulation settings

Returns: Formatted string with trajectory analysis results

estimate_rocket_sizing

Estimate rocket sizing requirements for target altitude and payload.

Args: target_altitude_m: Target altitude in meters payload_mass_kg: Payload mass in kg propellant_type: Propellant type ('solid' or 'liquid') design_margin: Design margin factor

Returns: JSON string with sizing estimates

optimize_launch_angle

Optimize rocket launch angle for maximum altitude or range.

Args: rocket_geometry: Rocket geometry parameters target_range_m: Optional target range in meters optimize_for: Optimization objective ('altitude' or 'range') angle_bounds_deg: Launch angle bounds in degrees

Returns: JSON string with optimization results

elements_to_state_vector

Convert orbital elements to state vector in J2000 frame.

Args: orbital_elements: Dict with orbital elements (semi_major_axis_m, eccentricity, etc.)

Returns: JSON string with state vector components

state_vector_to_elements

Convert state vector to classical orbital elements.

Args: state_vector: Dict with position_m and velocity_ms arrays

Returns: JSON string with orbital elements

propagate_orbit_j2

Propagate orbit with J2 perturbations using numerical integration.

Args: initial_state: Initial orbital state (elements or state vector) propagation_time_s: Propagation time in seconds time_step_s: Integration time step in seconds

Returns: JSON string with propagated state

calculate_ground_track

Calculate ground track from orbital state vectors.

Args: orbital_state: Orbital state (elements or state vector) duration_s: Duration for ground track calculation in seconds time_step_s: Time step for ground track points in seconds

Returns: JSON string with ground track coordinates

hohmann_transfer

Calculate Hohmann transfer orbit parameters between two circular orbits.

Args: r1_m: Initial orbit radius in meters r2_m: Final orbit radius in meters

Returns: JSON string with transfer orbit parameters

orbital_rendezvous_planning

Plan orbital rendezvous maneuvers between two spacecraft.

Args: chaser_elements: Chaser spacecraft orbital elements target_elements: Target spacecraft orbital elements rendezvous_options: Optional rendezvous planning parameters

Returns: JSON string with rendezvous plan

optimize_thrust_profile

Optimize rocket thrust profile for better performance using trajectory optimization.

Args: rocket_geometry: Rocket geometry parameters burn_time_s: Burn time in seconds total_impulse_target: Target total impulse in N⋅s n_segments: Number of thrust segments objective: Optimization objective

Returns: JSON string with optimized thrust profile

trajectory_sensitivity_analysis

Perform sensitivity analysis on rocket trajectory parameters.

Args: rocket_geometry: Baseline rocket geometry parameter_variations: Parameters to vary and their ranges analysis_options: Optional analysis settings

Returns: JSON string with sensitivity analysis results

genetic_algorithm_optimization

Optimize spacecraft trajectory using genetic algorithm.

Args: optimization_problem: Problem definition (objective, constraints, variables) ga_parameters: Optional GA parameters (population_size, generations, etc.)

Returns: JSON string with optimization results

particle_swarm_optimization

Optimize spacecraft trajectory using particle swarm optimization.

Args: optimization_problem: Problem definition (objective, constraints, variables) pso_parameters: Optional PSO parameters (n_particles, iterations, etc.)

Returns: JSON string with optimization results

porkchop_plot_analysis

Generate porkchop plot for interplanetary transfer opportunities.

Args: departure_body: Departure celestial body name arrival_body: Arrival celestial body name departure_date_range: Range of departure dates (ISO format) arrival_date_range: Range of arrival dates (ISO format) analysis_options: Optional analysis settings

Returns: JSON string with porkchop plot data

monte_carlo_uncertainty_analysis

Perform Monte Carlo uncertainty analysis on spacecraft trajectory.

Args: nominal_trajectory: Nominal trajectory parameters uncertainty_parameters: Parameters with uncertainty distributions n_samples: Number of Monte Carlo samples analysis_options: Optional analysis settings

Returns: JSON string with uncertainty analysis results

format_data_for_tool

Help format data in the correct format for a specific aerospace-mcp tool.

Uses GPT-5-Medium to analyze the user's requirements and raw data, then provides the correctly formatted parameters for the specified tool.

Args: tool_name: Name of the aerospace-mcp tool to format data for user_requirements: Description of what the user wants to accomplish raw_data: Any raw data that needs to be formatted (optional)

Returns: Formatted JSON string with the correct parameters for the tool

select_aerospace_tool

Help select the most appropriate aerospace-mcp tool for a given task.

Uses GPT-5-Medium to analyze the user's task and recommend the best tool(s) along with guidance on how to use them.

Args: user_task: Description of what the user wants to accomplish user_context: Additional context about the user's situation (optional)

Returns: Recommendation with tool name(s) and usage guidance

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cheesejaguar/aerospace-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server