Server Configuration
Describes the environment variables required to run the server.
| Name | Required | Description | Default |
|---|---|---|---|
No arguments | |||
Tools
Functions exposed to the LLM to take actions
| Name | Description |
|---|---|
| search_airports | Search for airports by IATA code or city name. Args: query: IATA code (e.g., 'SJC') or city name (e.g., 'San Jose') country: Optional ISO country code to filter by (e.g., 'US', 'JP') query_type: Type of query - 'iata' for IATA codes, 'city' for city names, 'auto' to detect Returns: Formatted string with airport information |
| plan_flight | Plan a flight route between two airports with performance estimates. Args: departure: Dict with departure info (city, country, iata) arrival: Dict with arrival info (city, country, iata) aircraft: Optional aircraft config (ac_type, cruise_alt_ft, route_step_km) route_options: Optional route options Returns: JSON string with flight plan details |
| calculate_distance | Calculate great circle distance between two points. Args: lat1: Latitude of first point in degrees lon1: Longitude of first point in degrees lat2: Latitude of second point in degrees lon2: Longitude of second point in degrees Returns: JSON string with distance information |
| get_aircraft_performance | Get performance estimates for an aircraft type (requires OpenAP). Args: aircraft_type: ICAO aircraft type code (e.g., 'A320', 'B737') distance_km: Flight distance in kilometers cruise_altitude_ft: Cruise altitude in feet Returns: JSON string with performance estimates or error message |
| get_system_status | Get system status and capabilities. Returns: JSON string with system status information |
| get_atmosphere_profile | Get atmospheric properties (pressure, temperature, density) at specified altitudes using ISA model. Args: altitudes_m: List of altitudes in meters model_type: Atmospheric model type ('ISA' for standard, 'enhanced' for extended) Returns: Formatted string with atmospheric profile data |
| wind_model_simple | Calculate wind speeds at different altitudes using logarithmic or power law models. Args: altitudes_m: List of altitudes in meters surface_wind_speed_ms: Wind speed at 10m reference height in m/s surface_wind_direction_deg: Wind direction at surface in degrees (0=North, 90=East) model_type: Wind model type ('logarithmic' or 'power_law') roughness_length_m: Surface roughness length in meters Returns: Formatted string with wind profile data |
| transform_frames | Transform coordinates between reference frames (ECEF, ECI, ITRF, GCRS, GEODETIC). Args: coordinates: Dict with coordinate data (format depends on frame) from_frame: Source reference frame to_frame: Target reference frame epoch_utc: Optional epoch for time-dependent transformations (ISO format) Returns: JSON string with transformed coordinates |
| geodetic_to_ecef | Convert geodetic coordinates (lat/lon/alt) to Earth-centered Earth-fixed (ECEF) coordinates. Args: latitude_deg: Latitude in degrees (-90 to 90) longitude_deg: Longitude in degrees (-180 to 180) altitude_m: Altitude above WGS84 ellipsoid in meters Returns: JSON string with ECEF coordinates |
| ecef_to_geodetic | Convert ECEF coordinates to geodetic (lat/lon/alt) coordinates. Args: x_m: X coordinate in meters y_m: Y coordinate in meters z_m: Z coordinate in meters Returns: JSON string with geodetic coordinates |
| wing_vlm_analysis | Analyze wing aerodynamics using Vortex Lattice Method or simplified lifting line theory. Args: wing_config: Wing configuration (span_m, chord_m, sweep_deg, etc.) flight_conditions: Flight conditions (airspeed_ms, altitude_m, alpha_deg) analysis_options: Optional analysis settings Returns: Formatted string with aerodynamic analysis results |
| airfoil_polar_analysis | Generate airfoil polar data (CL, CD, CM vs alpha) using database or advanced methods. Args: airfoil_name: Airfoil name (e.g., 'NACA2412', 'NACA0012') reynolds_number: Reynolds number mach_number: Mach number alpha_range_deg: Optional angle of attack range, defaults to [-10, 20] deg Returns: Formatted string with airfoil polar data |
| calculate_stability_derivatives | Calculate basic longitudinal stability derivatives for a wing. Args: wing_config: Wing configuration parameters flight_conditions: Flight conditions Returns: JSON string with stability derivatives |
| get_airfoil_database | Get available airfoil database with aerodynamic coefficients. Returns: JSON string with airfoil database |
| propeller_bemt_analysis | Analyze propeller performance using Blade Element Momentum Theory. Args: propeller_geometry: Propeller geometry (diameter_m, pitch_m, num_blades, etc.) operating_conditions: Operating conditions (rpm_list, velocity_ms, altitude_m) analysis_options: Optional analysis settings Returns: Formatted string with propeller performance analysis |
| uav_energy_estimate | Estimate UAV flight time and energy consumption for mission planning. Args: uav_config: UAV configuration parameters battery_config: Battery configuration parameters mission_profile: Optional mission profile parameters Returns: Formatted string with energy analysis results |
| get_propeller_database | Get available propeller database with geometric and performance data. Returns: JSON string with propeller database |
| rocket_3dof_trajectory | Calculate 3DOF rocket trajectory using numerical integration. Args: rocket_geometry: Rocket geometry parameters launch_conditions: Launch conditions (launch_angle_deg, launch_site, etc.) simulation_options: Optional simulation settings Returns: Formatted string with trajectory analysis results |
| estimate_rocket_sizing | Estimate rocket sizing requirements for target altitude and payload. Args: target_altitude_m: Target altitude in meters payload_mass_kg: Payload mass in kg propellant_type: Propellant type ('solid' or 'liquid') design_margin: Design margin factor Returns: JSON string with sizing estimates |
| optimize_launch_angle | Optimize rocket launch angle for maximum altitude or range. Args: rocket_geometry: Rocket geometry parameters target_range_m: Optional target range in meters optimize_for: Optimization objective ('altitude' or 'range') angle_bounds_deg: Launch angle bounds in degrees Returns: JSON string with optimization results |
| elements_to_state_vector | Convert orbital elements to state vector in J2000 frame. Args: orbital_elements: Dict with orbital elements (semi_major_axis_m, eccentricity, etc.) Returns: JSON string with state vector components |
| state_vector_to_elements | Convert state vector to classical orbital elements. Args: state_vector: Dict with position_m and velocity_ms arrays Returns: JSON string with orbital elements |
| propagate_orbit_j2 | Propagate orbit with J2 perturbations using numerical integration. Args: initial_state: Initial orbital state (elements or state vector) propagation_time_s: Propagation time in seconds time_step_s: Integration time step in seconds Returns: JSON string with propagated state |
| calculate_ground_track | Calculate ground track from orbital state vectors. Args: orbital_state: Orbital state (elements or state vector) duration_s: Duration for ground track calculation in seconds time_step_s: Time step for ground track points in seconds Returns: JSON string with ground track coordinates |
| hohmann_transfer | Calculate Hohmann transfer orbit parameters between two circular orbits. Args: r1_m: Initial orbit radius in meters r2_m: Final orbit radius in meters Returns: JSON string with transfer orbit parameters |
| orbital_rendezvous_planning | Plan orbital rendezvous maneuvers between two spacecraft. Args: chaser_elements: Chaser spacecraft orbital elements target_elements: Target spacecraft orbital elements rendezvous_options: Optional rendezvous planning parameters Returns: JSON string with rendezvous plan |
| optimize_thrust_profile | Optimize rocket thrust profile for better performance using trajectory optimization. Args: rocket_geometry: Rocket geometry parameters burn_time_s: Burn time in seconds total_impulse_target: Target total impulse in N⋅s n_segments: Number of thrust segments objective: Optimization objective Returns: JSON string with optimized thrust profile |
| trajectory_sensitivity_analysis | Perform sensitivity analysis on rocket trajectory parameters. Args: rocket_geometry: Baseline rocket geometry parameter_variations: Parameters to vary and their ranges analysis_options: Optional analysis settings Returns: JSON string with sensitivity analysis results |
| genetic_algorithm_optimization | Optimize spacecraft trajectory using genetic algorithm. Args: optimization_problem: Problem definition (objective, constraints, variables) ga_parameters: Optional GA parameters (population_size, generations, etc.) Returns: JSON string with optimization results |
| particle_swarm_optimization | Optimize spacecraft trajectory using particle swarm optimization. Args: optimization_problem: Problem definition (objective, constraints, variables) pso_parameters: Optional PSO parameters (n_particles, iterations, etc.) Returns: JSON string with optimization results |
| porkchop_plot_analysis | Generate porkchop plot for interplanetary transfer opportunities. Args: departure_body: Departure celestial body name arrival_body: Arrival celestial body name departure_date_range: Range of departure dates (ISO format) arrival_date_range: Range of arrival dates (ISO format) analysis_options: Optional analysis settings Returns: JSON string with porkchop plot data |
| monte_carlo_uncertainty_analysis | Perform Monte Carlo uncertainty analysis on spacecraft trajectory. Args: nominal_trajectory: Nominal trajectory parameters uncertainty_parameters: Parameters with uncertainty distributions n_samples: Number of Monte Carlo samples analysis_options: Optional analysis settings Returns: JSON string with uncertainty analysis results |
| format_data_for_tool | Help format data in the correct format for a specific aerospace-mcp tool. Uses GPT-5-Medium to analyze the user's requirements and raw data, then provides the correctly formatted parameters for the specified tool. Args: tool_name: Name of the aerospace-mcp tool to format data for user_requirements: Description of what the user wants to accomplish raw_data: Any raw data that needs to be formatted (optional) Returns: Formatted JSON string with the correct parameters for the tool |
| select_aerospace_tool | Help select the most appropriate aerospace-mcp tool for a given task. Uses GPT-5-Medium to analyze the user's task and recommend the best tool(s) along with guidance on how to use them. Args: user_task: Description of what the user wants to accomplish user_context: Additional context about the user's situation (optional) Returns: Recommendation with tool name(s) and usage guidance |
Prompts
Interactive templates invoked by user choice
| Name | Description |
|---|---|
No prompts | |
Resources
Contextual data attached and managed by the client
| Name | Description |
|---|---|
No resources | |