Skip to main content
Glama
cgrdavies

mcp-clickhouse-long-running

by cgrdavies

list_tables

Retrieve detailed information on ClickHouse tables in a specified database, including schema, comment, row count, and column count. Filter results using 'like' and 'not like' patterns for precise table listing.

Instructions

List available ClickHouse tables in a database, including schema, comment, row count, and column count.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
databaseYes
likeNo
not_likeNo

Implementation Reference

  • The @mcp.tool()-decorated handler function that implements the list_tables tool. It queries system.tables for table metadata in the given database (optionally filtered by like/not_like), then for each table queries system.columns to fetch column details, constructs Table and Column dataclasses, and returns serialized dicts.
    @mcp.tool() def list_tables( database: str, like: Optional[str] = None, not_like: Optional[str] = None ): """List available ClickHouse tables in a database, including schema, comment, row count, and column count.""" logger.info(f"Listing tables in database '{database}'") client = create_clickhouse_client() query = f"SELECT database, name, engine, create_table_query, dependencies_database, dependencies_table, engine_full, sorting_key, primary_key, total_rows, total_bytes, total_bytes_uncompressed, parts, active_parts, total_marks, comment FROM system.tables WHERE database = {format_query_value(database)}" if like: query += f" AND name LIKE {format_query_value(like)}" if not_like: query += f" AND name NOT LIKE {format_query_value(not_like)}" result = client.query(query) # Deserialize result as Table dataclass instances tables = result_to_table(result.column_names, result.result_rows) for table in tables: column_data_query = f"SELECT database, table, name, type AS column_type, default_kind, default_expression, comment FROM system.columns WHERE database = {format_query_value(database)} AND table = {format_query_value(table.name)}" column_data_query_result = client.query(column_data_query) table.columns = [ c for c in result_to_column( column_data_query_result.column_names, column_data_query_result.result_rows, ) ] logger.info(f"Found {len(tables)} tables") return [asdict(table) for table in tables]
  • Table dataclass defining the output schema for tables returned by list_tables.
    @dataclass class Table: database: str name: str engine: str create_table_query: str dependencies_database: str dependencies_table: str engine_full: str sorting_key: str primary_key: str total_rows: int total_bytes: int total_bytes_uncompressed: int parts: int active_parts: int total_marks: int comment: Optional[str] = None columns: List[Column] = field(default_factory=list)
  • Column dataclass defining the schema for table columns.
    @dataclass class Column: database: str table: str name: str column_type: str default_kind: Optional[str] default_expression: Optional[str] comment: Optional[str]
  • Helper function to convert query results to List[Table].
    def result_to_table(query_columns, result) -> List[Table]: return [Table(**dict(zip(query_columns, row))) for row in result]
  • Helper function to convert query results to List[Column].
    def result_to_column(query_columns, result) -> List[Column]: return [Column(**dict(zip(query_columns, row))) for row in result]

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cgrdavies/mcp-clickhouse'

If you have feedback or need assistance with the MCP directory API, please join our Discord server