Skip to main content
Glama
cgrdavies

mcp-clickhouse-long-running

by cgrdavies
mcp_server.py8.46 kB
import logging import json from typing import Optional, List, Any import concurrent.futures import atexit import clickhouse_connect from clickhouse_connect.driver.binding import format_query_value from dotenv import load_dotenv from mcp.server.fastmcp import FastMCP from dataclasses import dataclass, field, asdict, is_dataclass from mcp_clickhouse.mcp_env import get_config @dataclass class Column: database: str table: str name: str column_type: str default_kind: Optional[str] default_expression: Optional[str] comment: Optional[str] @dataclass class Table: database: str name: str engine: str create_table_query: str dependencies_database: str dependencies_table: str engine_full: str sorting_key: str primary_key: str total_rows: int total_bytes: int total_bytes_uncompressed: int parts: int active_parts: int total_marks: int comment: Optional[str] = None columns: List[Column] = field(default_factory=list) MCP_SERVER_NAME = "mcp-clickhouse" # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(MCP_SERVER_NAME) QUERY_EXECUTOR = concurrent.futures.ThreadPoolExecutor(max_workers=10) atexit.register(lambda: QUERY_EXECUTOR.shutdown(wait=True)) SELECT_QUERY_TIMEOUT_SECS = 30 * 60 load_dotenv() deps = [ "clickhouse-connect", "python-dotenv", "uvicorn", "pip-system-certs", ] mcp = FastMCP(MCP_SERVER_NAME, dependencies=deps) def result_to_table(query_columns, result) -> List[Table]: return [Table(**dict(zip(query_columns, row))) for row in result] def result_to_column(query_columns, result) -> List[Column]: return [Column(**dict(zip(query_columns, row))) for row in result] def to_json(obj: Any) -> str: if is_dataclass(obj): return json.dumps(asdict(obj), default=to_json) elif isinstance(obj, list): return [to_json(item) for item in obj] elif isinstance(obj, dict): return {key: to_json(value) for key, value in obj.items()} return obj @mcp.tool() def list_databases(): """List available ClickHouse databases""" logger.info("Listing all databases") client = create_clickhouse_client() result = client.command("SHOW DATABASES") logger.info(f"Found {len(result) if isinstance(result, list) else 1} databases") return result @mcp.tool() def list_tables( database: str, like: Optional[str] = None, not_like: Optional[str] = None ): """List available ClickHouse tables in a database, including schema, comment, row count, and column count.""" logger.info(f"Listing tables in database '{database}'") client = create_clickhouse_client() query = f"SELECT database, name, engine, create_table_query, dependencies_database, dependencies_table, engine_full, sorting_key, primary_key, total_rows, total_bytes, total_bytes_uncompressed, parts, active_parts, total_marks, comment FROM system.tables WHERE database = {format_query_value(database)}" if like: query += f" AND name LIKE {format_query_value(like)}" if not_like: query += f" AND name NOT LIKE {format_query_value(not_like)}" result = client.query(query) # Deserialize result as Table dataclass instances tables = result_to_table(result.column_names, result.result_rows) for table in tables: column_data_query = f"SELECT database, table, name, type AS column_type, default_kind, default_expression, comment FROM system.columns WHERE database = {format_query_value(database)} AND table = {format_query_value(table.name)}" column_data_query_result = client.query(column_data_query) table.columns = [ c for c in result_to_column( column_data_query_result.column_names, column_data_query_result.result_rows, ) ] logger.info(f"Found {len(tables)} tables") return [asdict(table) for table in tables] def execute_query(query: str): client = create_clickhouse_client() try: read_only = get_readonly_setting(client) res = client.query(query, settings={"readonly": read_only}) column_names = res.column_names rows = [] for row in res.result_rows: row_dict = {} for i, col_name in enumerate(column_names): row_dict[col_name] = row[i] rows.append(row_dict) logger.info(f"Query returned {len(rows)} rows") return rows except Exception as err: logger.error(f"Error executing query: {err}") # Return a structured dictionary rather than a string to ensure proper serialization # by the MCP protocol. String responses for errors can cause BrokenResourceError. return {"error": str(err)} @mcp.tool() def run_select_query(query: str): """Run a SELECT query in a ClickHouse database""" logger.info(f"Executing SELECT query: {query}") try: future = QUERY_EXECUTOR.submit(execute_query, query) try: result = future.result(timeout=SELECT_QUERY_TIMEOUT_SECS) # Check if we received an error structure from execute_query if isinstance(result, dict) and "error" in result: logger.warning(f"Query failed: {result['error']}") # MCP requires structured responses; string error messages can cause # serialization issues leading to BrokenResourceError return { "status": "error", "message": f"Query failed: {result['error']}", } return result except concurrent.futures.TimeoutError: logger.warning( f"Query timed out after {SELECT_QUERY_TIMEOUT_SECS} seconds: {query}" ) future.cancel() # Return a properly structured response for timeout errors return { "status": "error", "message": f"Query timed out after {SELECT_QUERY_TIMEOUT_SECS} seconds", } except Exception as e: logger.error(f"Unexpected error in run_select_query: {str(e)}") # Catch all other exceptions and return them in a structured format # to prevent MCP serialization failures return {"status": "error", "message": f"Unexpected error: {str(e)}"} def create_clickhouse_client(): client_config = get_config().get_client_config() logger.info( f"Creating ClickHouse client connection to {client_config['host']}:{client_config['port']} " f"as {client_config['username']} " f"(secure={client_config['secure']}, verify={client_config['verify']}, " f"connect_timeout={client_config['connect_timeout']}s, " f"send_receive_timeout={client_config['send_receive_timeout']}s)" ) try: client = clickhouse_connect.get_client(**client_config) # Test the connection version = client.server_version logger.info(f"Successfully connected to ClickHouse server version {version}") return client except Exception as e: logger.error(f"Failed to connect to ClickHouse: {str(e)}") raise def get_readonly_setting(client) -> str: """Get the appropriate readonly setting value to use for queries. This function handles potential conflicts between server and client readonly settings: - readonly=0: No read-only restrictions - readonly=1: Only read queries allowed, settings cannot be changed - readonly=2: Only read queries allowed, settings can be changed (except readonly itself) If server has readonly=2 and client tries to set readonly=1, it would cause: "Setting readonly is unknown or readonly" error This function preserves the server's readonly setting unless it's 0, in which case we enforce readonly=1 to ensure queries are read-only. Args: client: ClickHouse client connection Returns: String value of readonly setting to use """ read_only = client.server_settings.get("readonly") if read_only: if read_only == "0": return "1" # Force read-only mode if server has it disabled else: return read_only.value # Respect server's readonly setting (likely 2) else: return "1" # Default to basic read-only mode if setting isn't present

Implementation Reference

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cgrdavies/mcp-clickhouse'

If you have feedback or need assistance with the MCP directory API, please join our Discord server