SEO AI Assistant
by ccnn2509
Verified
# App SEO AI
Application for SEO automation and AI-powered optimization with Google Ads Keyword Planner integration.
## Features
- Keyword research using Google Ads API
- SERP analysis
- Competitor analysis
- SEO recommendations
- MCP (Model Context Protocol) integration for AI assistants
## Prerequisites
- Node.js (v14 or higher)
- npm or yarn
- Google Ads account with API access
- Google Cloud Platform project with Google Ads API enabled
## Setup
### 1. Clone the repository
```bash
git clone https://github.com/ccnn2509/app-seo-ai.git
cd app-seo-ai
```
### 2. Install dependencies
```bash
npm install
```
### 3. Configure environment variables
Copy the example environment file:
```bash
cp .env.example .env
```
Edit the `.env` file and fill in your Google Ads API credentials:
```
# Server Configuration
PORT=3000
NODE_ENV=development
# Google Ads API Configuration
GOOGLE_ADS_DEVELOPER_TOKEN=your_developer_token
GOOGLE_ADS_CLIENT_ID=your_client_id
GOOGLE_ADS_CLIENT_SECRET=your_client_secret
GOOGLE_ADS_REFRESH_TOKEN=your_refresh_token
GOOGLE_ADS_LOGIN_CUSTOMER_ID=your_customer_id_without_dashes
# SERP API Configuration (optional)
SERP_API_KEY=your_serp_api_key
```
### 4. Get Google Ads API refresh token
Run the following command to get a refresh token:
```bash
npm run get-token
```
This will open your browser and guide you through the OAuth2 authentication process. The refresh token will be automatically saved to your `.env` file.
### 5. Start the server
For development:
```bash
npm run dev
```
For production:
```bash
npm start
```
The server will start on the port specified in your `.env` file (default: 3000).
## API Documentation
API documentation is available at `/api-docs` when the server is running:
```
http://localhost:3000/api-docs
```
## MCP Integration
This project includes MCP (Model Context Protocol) integration, allowing AI assistants to use the API. The MCP configuration is in the `mcp.json` file.
To use this with Smithery:
1. Go to [Smithery](https://smithery.ai/)
2. Create a new MCP server
3. Select the `app-seo-ai` repository
4. Configure the server settings
5. Deploy the server
## Available MCP Tools
- `research_keywords` - Research keywords related to a given topic or seed keyword
- `analyze_serp` - Analyze a SERP (Search Engine Results Page) for a given query
- `analyze_competitors` - Analyze competitors for a given keyword or domain
- `_health` - Health check endpoint
## Example Usage
### Research Keywords
```javascript
// Example request to research keywords
fetch('http://localhost:3000/api/keywords/ideas?keyword=seo%20tools&language=en')
.then(response => response.json())
.then(data => console.log(data));
```
### Analyze SERP
```javascript
// Example request to analyze SERP
fetch('http://localhost:3000/api/serp/analyze?query=best%20seo%20tools&location=United%20States')
.then(response => response.json())
.then(data => console.log(data));
```
### Analyze Competitors
```javascript
// Example request to analyze competitors
fetch('http://localhost:3000/api/competitors/analyze?domain=example.com')
.then(response => response.json())
.then(data => console.log(data));
```
## License
MIT