Skip to main content
Glama
cbcoutinho

Nextcloud MCP Server

by cbcoutinho
pdf_highlighter.py33.9 kB
"""PDF chunk highlighting utilities for vector visualization. This module provides utilities to generate highlighted page images showing matched chunks and their context from semantic search results. The highlighting uses character offsets to precisely locate chunks within PDF documents, ensuring accurate highlighting even when text formatting varies between indexing and rendering. """ import logging import re from typing import Optional import pymupdf import pymupdf4llm logger = logging.getLogger(__name__) class PDFHighlighter: """Generate highlighted page images from PDF chunks.""" # Color definitions (RGB, 0-1 range) COLORS = { "yellow": [1, 1, 0], "red": [1, 0, 0], "green": [0, 1, 0], "blue": [0, 0, 1], "orange": [1, 0.5, 0], "pink": [1, 0, 1], "gray": [0.7, 0.7, 0.7], "light_blue": [0.7, 0.9, 1.0], "light_green": [0.7, 1.0, 0.7], } @staticmethod def strip_markdown(text: str) -> str: """Remove markdown formatting to improve search accuracy. Args: text: Text with potential markdown formatting Returns: Plain text with markdown removed """ # Remove bold/italic markers text = re.sub(r"\*\*(.+?)\*\*", r"\1", text) text = re.sub(r"\*(.+?)\*", r"\1", text) text = re.sub(r"__(.+?)__", r"\1", text) text = re.sub(r"_(.+?)_", r"\1", text) # Remove headers text = re.sub(r"^#+\s+", "", text, flags=re.MULTILINE) # Remove inline code text = re.sub(r"`(.+?)`", r"\1", text) return text.strip() @staticmethod def extract_pdf_text_with_boundaries( pdf_doc: pymupdf.Document, ) -> tuple[str, list[dict]]: """Extract full document text with page boundary tracking. Uses pymupdf4llm.to_markdown() for consistency with indexing. IMPORTANT: Must use write_images=True to match PyMuPDFProcessor behavior! Even though we don't need the images, we need the image references in the markdown text to maintain consistent character offsets with indexing. Args: pdf_doc: Open PyMuPDF document Returns: Tuple of (full_text, page_boundaries) where page_boundaries is a list of: {"page": 1, "start_offset": 0, "end_offset": 1234} """ import tempfile from pathlib import Path page_boundaries = [] text_parts = [] current_offset = 0 # Use temp directory for image output (images are discarded after extraction) temp_dir = Path(tempfile.mkdtemp(prefix="pdf_highlight_")) for page_idx in range(pdf_doc.page_count): page_md = pymupdf4llm.to_markdown( pdf_doc, pages=[page_idx], write_images=True, # Must match indexing! Otherwise offsets misalign image_path=temp_dir, page_chunks=False, ) page_boundaries.append( { "page": page_idx + 1, # 1-indexed "start_offset": current_offset, "end_offset": current_offset + len(page_md), } ) text_parts.append(page_md) current_offset += len(page_md) full_text = "".join(text_parts) # Clean up temp directory and extracted images import shutil try: shutil.rmtree(temp_dir) except Exception as e: logger.warning(f"Failed to clean up temp directory {temp_dir}: {e}") return full_text, page_boundaries @staticmethod def find_chunk_page( chunk_start_offset: int, chunk_end_offset: int, page_boundaries: list[dict], ) -> Optional[dict]: """Find which page contains the most of a given chunk. Args: chunk_start_offset: Chunk start position in full document chunk_end_offset: Chunk end position in full document page_boundaries: Page boundary list from extract_pdf_text_with_boundaries() Returns: Dict with keys: page_num, overlap_chars, page_relative_start, page_relative_end or None if chunk not found on any page """ chunk_pages = [] for boundary in page_boundaries: page_start = boundary["start_offset"] page_end = boundary["end_offset"] # Check if chunk overlaps with this page if chunk_start_offset < page_end and chunk_end_offset > page_start: overlap_start = max(chunk_start_offset, page_start) overlap_end = min(chunk_end_offset, page_end) overlap_chars = overlap_end - overlap_start chunk_pages.append( { "page_num": boundary["page"], "overlap_chars": overlap_chars, "page_relative_start": overlap_start - page_start, "page_relative_end": overlap_end - page_start, } ) if not chunk_pages: return None # Return page with maximum overlap return max(chunk_pages, key=lambda p: p["overlap_chars"]) @staticmethod def highlight_chunk_by_word_positions( page: pymupdf.Page, chunk_text: str, color: str = "yellow", search_region: tuple[float, float, float, float] | None = None, ) -> int: """Highlight chunk using word-position matching. This method matches words from the chunk to their positions on the PDF page, avoiding text search mismatches between markdown-formatted text and raw PDF text. Args: page: PyMuPDF page object chunk_text: Text to highlight (may contain markdown) color: Color name from COLORS dict search_region: Optional (x0, y0, x1, y1) bounding box to constrain search. If provided, only words within this region are considered. Returns: Number of highlight rectangles added """ # Tokenize chunk into words (alphanumeric only, lowercase) chunk_words = re.findall( r"\w+", PDFHighlighter.strip_markdown(chunk_text).lower() ) if not chunk_words: logger.warning("No words found in chunk text") return 0 # Get all words from page with positions # Format: (x0, y0, x1, y1, "word", block_no, line_no, word_no) try: page_words = page.get_text("words") except Exception as e: logger.error(f"Failed to extract words from page: {e}") return 0 if not page_words: logger.warning("No words found on page") return 0 # Filter words by search region if provided if search_region: rx0, ry0, rx1, ry1 = search_region # Allow some tolerance (10 points) for words near region boundary tolerance = 10 page_words = [ w for w in page_words if ( w[0] >= rx0 - tolerance and w[2] <= rx1 + tolerance and w[1] >= ry0 - tolerance and w[3] <= ry1 + tolerance ) ] logger.debug( f"Filtered to {len(page_words)} words in region " f"({rx0:.0f}, {ry0:.0f}, {rx1:.0f}, {ry1:.0f})" ) if not page_words: logger.warning("No words found in search region") return 0 # Find matching word sequence - use FIRST match, not longest # This ensures we highlight the actual chunk location, not similar text elsewhere matches = [] # Build a simple word-to-positions index for the first few chunk words # to find candidate starting positions first_chunk_word = chunk_words[0] if chunk_words else "" candidate_starts = [] for i, pw in enumerate(page_words): page_word = pw[4].lower() # Check if this could be the start of the chunk if ( first_chunk_word == page_word or first_chunk_word in page_word or page_word in first_chunk_word ): candidate_starts.append(i) # Try each candidate start position and take the FIRST good match for start_pos in candidate_starts: current_matches = [] chunk_idx = 0 skip_count = 0 max_skips = 3 # Allow some formatting differences for page_idx in range(start_pos, len(page_words)): if chunk_idx >= len(chunk_words): break page_word = page_words[page_idx][4].lower() chunk_word = chunk_words[chunk_idx] # Check for match (allow partial matches for flexibility) if ( chunk_word == page_word or chunk_word in page_word or page_word in chunk_word ): current_matches.append(page_words[page_idx]) chunk_idx += 1 skip_count = 0 elif skip_count < max_skips: # Allow skipping some words (formatting, punctuation) skip_count += 1 continue else: break # Accept if we matched at least 50% of chunk words if len(current_matches) >= len(chunk_words) * 0.5: matches = current_matches logger.debug( f"Found match at position {start_pos}: " f"{len(matches)}/{len(chunk_words)} words" ) break # Take FIRST match, not best/longest if not matches: logger.debug(f"No word matches found (chunk has {len(chunk_words)} words)") return 0 logger.debug( f"Matched {len(matches)} words out of {len(chunk_words)} chunk words" ) # Build rectangles from matched words rects = [pymupdf.Rect(w[0], w[1], w[2], w[3]) for w in matches] # Check if matches are contiguous (not scattered across the page) # Scattered matches indicate false positives from common words if len(rects) > 1: # Sort by vertical position then horizontal sorted_matches = sorted(matches, key=lambda w: (round(w[1]), w[0])) # Check for large vertical gaps (more than ~2 lines apart) # A typical line height is 12-20 points max_line_gap = 50 # Points - allows for ~2-3 lines gap prev_y = sorted_matches[0][1] large_gaps = 0 for match in sorted_matches[1:]: y_gap = match[1] - prev_y if y_gap > max_line_gap: large_gaps += 1 prev_y = match[1] # If matches are scattered (many large gaps), reject this match # A chunk should be mostly contiguous text if large_gaps > len(matches) * 0.3: # More than 30% have gaps logger.debug( f"Rejecting scattered matches: {large_gaps} large gaps " f"out of {len(matches)} matches" ) return 0 # Merge adjacent rectangles on the same line for cleaner highlighting merged_rects = [] sorted_rects = sorted(rects, key=lambda r: (round(r.y0), r.x0)) current_rect = None for rect in sorted_rects: if current_rect is None: current_rect = rect elif abs(rect.y0 - current_rect.y0) < 5: # Same line (within 5 points) current_rect = current_rect | rect # Union else: merged_rects.append(current_rect) current_rect = rect if current_rect: merged_rects.append(current_rect) # Add highlights rgb = PDFHighlighter.COLORS.get(color, PDFHighlighter.COLORS["yellow"]) for rect in merged_rects: highlight = page.add_highlight_annot(rect) highlight.set_colors({"stroke": rgb}) highlight.set_info( content="Chunk from semantic search", title="PDF Highlighter (word-position)", ) highlight.update() return len(merged_rects) @staticmethod def find_unique_phrase( text: str, min_len: int = 30, max_len: int = 80 ) -> str | None: """Find a relatively unique phrase from text for location search. Looks for phrases that are likely to be unique on the page: - Prefers phrases with numbers or special terms - Avoids very common words Args: text: Source text to extract phrase from min_len: Minimum phrase length max_len: Maximum phrase length Returns: A phrase likely to be unique, or None if not found """ clean_text = PDFHighlighter.strip_markdown(text).strip() if not clean_text: return None # Try first sentence (often unique due to context) sentences = re.split(r"[.!?]\s+", clean_text) for sentence in sentences: sentence = sentence.strip() if min_len <= len(sentence) <= max_len: return sentence elif len(sentence) > max_len: return sentence[:max_len] # Fallback: first N chars if len(clean_text) >= min_len: return clean_text[:max_len] return clean_text if clean_text else None @staticmethod def _find_chunk_bbox( page: pymupdf.Page, chunk_text: str, page_relative_start: int, page_relative_end: int, page_text_length: int, ) -> tuple[float, float, float, float] | None: """Find bounding box for a chunk without modifying the page. Returns (x0, y0, x1, y1) in page coordinates, or None if not found. """ page_rect = page.rect # Strip markdown for searching search_text = PDFHighlighter.strip_markdown(chunk_text) # Try to find chunk location using text search anchor_rect = None search_phrases = [] # Build search phrases from chunk text sentences = re.split(r"[.!?]\s+", search_text) for sentence in sentences[:3]: sentence = sentence.strip() if len(sentence) >= 20: search_phrases.append(sentence[:80]) if len(sentence) >= 40: search_phrases.append(sentence[:40]) # Also try first N characters if len(search_text) >= 30: search_phrases.append(search_text[:60]) search_phrases.append(search_text[:30]) for phrase in search_phrases: if not phrase: continue rects = page.search_for(phrase.strip()) if rects: anchor_rect = rects[0] break if not anchor_rect: return None # Calculate chunk height based on character count chunk_chars = len(search_text) estimated_lines = max(1, chunk_chars / 60) estimated_height = estimated_lines * 14 # Build bounding box return ( page_rect.x0 + 30, # Left margin anchor_rect.y0 - 5, # Start slightly above anchor page_rect.x1 - 30, # Right margin min(anchor_rect.y0 + estimated_height + 10, page_rect.y1 - 30), ) @staticmethod def highlight_chunk_on_page( page: pymupdf.Page, chunk_text: str, color: str = "yellow", page_relative_start: int | None = None, page_relative_end: int | None = None, page_text_length: int | None = None, ) -> int: """Add bounding box highlight to a PDF page for the given chunk text. Uses text search to find the chunk's location on the page, then draws a bounding box around that region. Falls back to character offset estimation if text search fails. Args: page: PyMuPDF page object chunk_text: Text to highlight (may contain markdown) color: Color name from COLORS dict page_relative_start: Character offset where chunk starts on page (optional) page_relative_end: Character offset where chunk ends on page (optional) page_text_length: Total character length of page text (optional) Returns: Number of highlights added (1 for bounding box, 0 if failed) """ page_rect = page.rect rgb = PDFHighlighter.COLORS.get(color, PDFHighlighter.COLORS["yellow"]) # Strip markdown for searching search_text = PDFHighlighter.strip_markdown(chunk_text) # Try to find chunk location using text search # Search for progressively shorter phrases until we find a match anchor_rect = None search_phrases = [] # Build search phrases from chunk text sentences = re.split(r"[.!?]\s+", search_text) for sentence in sentences[:3]: # Try first 3 sentences sentence = sentence.strip() if len(sentence) >= 20: search_phrases.append(sentence[:80]) if len(sentence) >= 40: search_phrases.append(sentence[:40]) # Also try first N characters if len(search_text) >= 30: search_phrases.append(search_text[:60]) search_phrases.append(search_text[:30]) for phrase in search_phrases: if not phrase: continue rects = page.search_for(phrase.strip()) if rects: anchor_rect = rects[0] # Use first match logger.debug(f"Found chunk anchor using phrase: '{phrase[:30]}...'") break if not anchor_rect: page_num = page.number + 1 if page.number is not None else "unknown" logger.warning(f"Could not find chunk text on page {page_num}") return 0 # Calculate chunk height based on character count # Estimate ~15 chars per line, ~12pt line height chunk_chars = len(search_text) estimated_lines = max(1, chunk_chars / 60) # ~60 chars per line typical estimated_height = estimated_lines * 14 # ~14pt per line # Build bounding box starting from anchor chunk_rect = pymupdf.Rect( page_rect.x0 + 30, # Left margin anchor_rect.y0 - 5, # Start slightly above anchor page_rect.x1 - 30, # Right margin min( anchor_rect.y0 + estimated_height + 10, page_rect.y1 - 30 ), # Estimated bottom ) # Draw a visible rectangle around the chunk region shape = page.new_shape() shape.draw_rect(chunk_rect) shape.finish( color=rgb, # Border color fill=None, # No fill (transparent) width=2.5, # Border width dashes="[4 2]", # Dashed line ) shape.commit() # Add semi-transparent fill for visibility fill_shape = page.new_shape() fill_shape.draw_rect(chunk_rect) fill_shape.finish( color=None, # No border fill=[1, 1, 0.7], # Light yellow fill fill_opacity=0.15, # Very transparent ) fill_shape.commit() logger.debug( f"Added bounding box at y={chunk_rect.y0:.0f}-{chunk_rect.y1:.0f} " f"(estimated {estimated_lines:.1f} lines)" ) return 1 @staticmethod def highlight_chunk( pdf_bytes: bytes, chunk_start_offset: int, chunk_end_offset: int, stored_page_number: Optional[int] = None, color: str = "yellow", zoom: float = 2.0, ) -> Optional[tuple[bytes, int, int]]: """Generate PNG image of PDF page with highlighted chunk. This is the main entry point for highlighting. It: 1. Extracts document text with page boundaries 2. Finds which page contains the chunk 3. Extracts chunk text using character offsets 4. Highlights the chunk on the page 5. Renders page to PNG Args: pdf_bytes: PDF file bytes chunk_start_offset: Chunk start position (document-level) chunk_end_offset: Chunk end position (document-level) stored_page_number: Page number from metadata (optional, for validation) color: Highlight color name zoom: Rendering zoom factor (2.0 = 144 DPI) Returns: Tuple of (png_bytes, page_number, highlight_count) or None if failed """ import tempfile from pathlib import Path temp_pdf_path = None try: # Write PDF to temp file with consistent name "pdf.pdf" # This ensures image references match indexing (e.g., pdf-0001.png) # Different temp filenames would cause different markdown text lengths! temp_dir = Path(tempfile.mkdtemp(prefix="pdf_highlight_")) temp_pdf_path = temp_dir / "pdf.pdf" temp_pdf_path.write_bytes(pdf_bytes) # Open PDF from temp file doc = pymupdf.open(temp_pdf_path) # Extract text with page boundaries full_text, page_boundaries = ( PDFHighlighter.extract_pdf_text_with_boundaries(doc) ) # Find which page contains the chunk chunk_page_info = PDFHighlighter.find_chunk_page( chunk_start_offset, chunk_end_offset, page_boundaries ) if not chunk_page_info: logger.error("Chunk not found on any page") doc.close() return None page_num = chunk_page_info["page_num"] # Log if page differs from stored metadata if stored_page_number and stored_page_number != page_num: logger.info( f"Chunk primarily on page {page_num}, metadata says {stored_page_number}" ) # Extract page text page_boundary = page_boundaries[page_num - 1] page_start = page_boundary["start_offset"] page_end = page_boundary["end_offset"] page_text = full_text[page_start:page_end] # Extract chunk text using page-relative offsets page_relative_start = chunk_page_info["page_relative_start"] page_relative_end = chunk_page_info["page_relative_end"] chunk_text = page_text[page_relative_start:page_relative_end] # Calculate page text length for region estimation page_text_length = page_end - page_start logger.debug( f"Extracted {len(chunk_text)} chars on page {page_num} " f"(offsets {page_relative_start}-{page_relative_end} of {page_text_length})" ) # Get page and add highlights page = doc[page_num - 1] highlight_count = PDFHighlighter.highlight_chunk_on_page( page, chunk_text, color, page_relative_start=page_relative_start, page_relative_end=page_relative_end, page_text_length=page_text_length, ) if highlight_count == 0: logger.warning("No highlights added") doc.close() return None # Render page to PNG mat = pymupdf.Matrix(zoom, zoom) pix = page.get_pixmap(matrix=mat, alpha=False) png_bytes = pix.tobytes("png") doc.close() logger.info( f"Generated {len(png_bytes):,} byte image with {highlight_count} highlights" ) return (png_bytes, page_num, highlight_count) except Exception as e: logger.error(f"Error highlighting chunk: {e}", exc_info=True) return None finally: # Clean up temp directory and PDF file if temp_pdf_path and temp_pdf_path.parent.exists(): try: import shutil shutil.rmtree(temp_pdf_path.parent) except Exception as e: logger.warning( f"Failed to delete temp directory {temp_pdf_path.parent}: {e}" ) @staticmethod def highlight_chunks_batch( pdf_bytes: bytes, chunks: list[tuple[int, int, int, int | None, str]], page_boundaries: list[dict], full_text: str, color: str = "yellow", zoom: float = 2.0, ) -> dict[int, tuple[bytes, int, int]]: """Generate highlighted images for multiple chunks. Opens PDF once for rendering, uses pre-computed page boundaries from the document processor. This ensures consistent character offsets between chunking and highlighting. Args: pdf_bytes: PDF file bytes chunks: List of (chunk_index, start_offset, end_offset, stored_page_number, chunk_text) The chunk_index is used as the key in the returned dict. chunk_text is the actual text content of the chunk. page_boundaries: Pre-computed page boundaries from document processor. Each entry: {"page": 1, "start_offset": 0, "end_offset": 1234} full_text: Full document text for extracting page-relative portions. color: Highlight color name zoom: Rendering zoom factor (2.0 = 144 DPI) Returns: Dict mapping chunk_index to (png_bytes, page_number, highlight_count) Chunks that fail to highlight are omitted from the result. """ import shutil import tempfile from collections import defaultdict from pathlib import Path results: dict[int, tuple[bytes, int, int]] = {} if not chunks: return results temp_pdf_path = None try: # Write PDF to temp file temp_dir = Path(tempfile.mkdtemp(prefix="pdf_highlight_batch_")) temp_pdf_path = temp_dir / "pdf.pdf" temp_pdf_path.write_bytes(pdf_bytes) # Open PDF once (only for rendering, not text extraction) doc = pymupdf.open(temp_pdf_path) logger.debug( f"Batch highlighting: {len(chunks)} chunks, " f"{len(page_boundaries)} pages" ) # Group chunks by their target page for efficient rendering # We'll render each page only once with all its highlights chunks_by_page: dict[int, list[tuple[int, dict, str]]] = defaultdict(list) for chunk_tuple in chunks: # Unpack chunk tuple - chunk_text is now passed directly chunk_index, start_offset, end_offset, stored_page_num, chunk_text = ( chunk_tuple ) # Find which page contains this chunk chunk_page_info = PDFHighlighter.find_chunk_page( start_offset, end_offset, page_boundaries ) if not chunk_page_info: logger.warning(f"Chunk {chunk_index}: not found on any page") continue page_num = chunk_page_info["page_num"] # Log if page differs from stored metadata if stored_page_num and stored_page_num != page_num: logger.debug( f"Chunk {chunk_index}: found on page {page_num}, " f"metadata says {stored_page_num}" ) # Extract page-relative portion of chunk text # This is critical for cross-page chunks where the start # of the chunk might be on a different page page_boundary = page_boundaries[page_num - 1] page_start = page_boundary["start_offset"] page_end = page_boundary["end_offset"] page_text_length = page_end - page_start # Calculate what portion of the chunk appears on this page chunk_start_on_page = max(start_offset, page_start) chunk_end_on_page = min(end_offset, page_end) # Extract just the text that appears on this page page_relative_text = full_text[chunk_start_on_page:chunk_end_on_page] chunks_by_page[page_num].append( (chunk_index, chunk_page_info, page_relative_text, page_text_length) ) logger.debug( f"Chunks distributed across {len(chunks_by_page)} unique pages" ) # OPTIMIZATION: Render each page ONCE, then draw highlights using PIL # This avoids expensive page.get_pixmap() calls per chunk from io import BytesIO from PIL import Image, ImageDraw # PIL color for bounding box (RGB tuple) rgb = PDFHighlighter.COLORS.get(color, PDFHighlighter.COLORS["yellow"]) pil_color = tuple(int(c * 255) for c in rgb) fill_color = (255, 255, 178, 38) # Light yellow with alpha for page_num, page_chunks in chunks_by_page.items(): page = doc[page_num - 1] # Render page ONCE to get base image (most expensive operation) mat = pymupdf.Matrix(zoom, zoom) base_pix = page.get_pixmap(matrix=mat, alpha=False) base_png = base_pix.tobytes("png") # Convert to PIL Image for fast highlight drawing base_image = Image.open(BytesIO(base_png)).convert("RGBA") page_rect = page.rect logger.debug( f"Page {page_num}: rendered once, processing {len(page_chunks)} chunks" ) for ( chunk_index, chunk_page_info, chunk_text, page_text_length, ) in page_chunks: try: # Find chunk bounding box using text search bbox = PDFHighlighter._find_chunk_bbox( page, chunk_text, chunk_page_info["page_relative_start"], chunk_page_info["page_relative_end"], page_text_length, ) if bbox is None: logger.warning(f"Chunk {chunk_index}: could not find bbox") continue # Copy base image for this chunk chunk_image = base_image.copy() # Scale bbox coordinates to pixmap coordinates scale_x = base_pix.width / page_rect.width scale_y = base_pix.height / page_rect.height pil_bbox = ( int(bbox[0] * scale_x), int(bbox[1] * scale_y), int(bbox[2] * scale_x), int(bbox[3] * scale_y), ) # Create transparent overlay for fill (proper alpha blending) overlay = Image.new("RGBA", chunk_image.size, (0, 0, 0, 0)) overlay_draw = ImageDraw.Draw(overlay) overlay_draw.rectangle(pil_bbox, fill=fill_color) # Alpha composite the overlay onto the chunk image chunk_image = Image.alpha_composite(chunk_image, overlay) # Draw border on top (solid, not transparent) border_draw = ImageDraw.Draw(chunk_image) border_draw.rectangle(pil_bbox, outline=pil_color, width=3) # Convert back to PNG bytes output = BytesIO() chunk_image.convert("RGB").save(output, format="PNG") png_bytes = output.getvalue() results[chunk_index] = (png_bytes, page_num, 1) logger.debug( f"Chunk {chunk_index}: {len(png_bytes):,} bytes, " f"page {page_num}, bbox {pil_bbox}" ) except Exception as e: logger.error(f"Chunk {chunk_index}: error - {e}") continue doc.close() logger.info( f"Batch highlighted {len(results)}/{len(chunks)} chunks successfully" ) return results except Exception as e: logger.error(f"Error in batch highlighting: {e}", exc_info=True) return results finally: # Clean up temp directory if temp_pdf_path and temp_pdf_path.parent.exists(): try: shutil.rmtree(temp_pdf_path.parent) except Exception as e: logger.warning(f"Failed to clean up temp dir: {e}")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cbcoutinho/nextcloud-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server