"""Base interfaces and data structures for search algorithms."""
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any, Protocol, runtime_checkable
@runtime_checkable
class NextcloudClientProtocol(Protocol):
"""Protocol for Nextcloud client supporting multi-document search.
This protocol defines the interface that search algorithms need from a
Nextcloud client to access documents across different apps (Notes, Files,
Calendar, etc.). The client provides access to app-specific sub-clients
that handle the actual API calls.
Document types (e.g., "note", "file", "calendar") are NOT 1:1 with apps.
For example, the Notes app specializes in markdown files, while Files/WebDAV
handles multiple file types. The abstraction is at the document type level.
Search algorithms query Qdrant to determine which document types are actually
indexed before attempting to access them, enabling graceful cross-app search.
"""
username: str
# App-specific clients that search algorithms dispatch to
@property
def notes(self) -> Any:
"""Notes client for accessing note documents."""
...
@property
def webdav(self) -> Any:
"""WebDAV client for accessing file documents."""
...
@property
def calendar(self) -> Any:
"""Calendar client for accessing event/task documents."""
...
@property
def contacts(self) -> Any:
"""Contacts client for accessing contact card documents."""
...
@property
def deck(self) -> Any:
"""Deck client for accessing deck card documents."""
...
@property
def cookbook(self) -> Any:
"""Cookbook client for accessing recipe documents."""
...
@property
def tables(self) -> Any:
"""Tables client for accessing table row documents."""
...
async def get_indexed_doc_types(user_id: str) -> set[str]:
"""Query Qdrant to get actually-indexed document types for a user.
This enables search algorithms to check which document types are available
before attempting to search/verify them, allowing graceful cross-app search.
Args:
user_id: User ID to filter by
Returns:
Set of document type strings (e.g., {"note", "file", "calendar"})
Example:
>>> types = await get_indexed_doc_types("alice")
>>> if "note" in types:
... # Search notes
"""
import logging
from qdrant_client.models import FieldCondition, Filter, MatchValue
from nextcloud_mcp_server.config import get_settings
from nextcloud_mcp_server.vector.placeholder import get_placeholder_filter
from nextcloud_mcp_server.vector.qdrant_client import get_qdrant_client
logger = logging.getLogger(__name__)
settings = get_settings()
qdrant_client = await get_qdrant_client()
collection = settings.get_collection_name()
# Use scroll to sample documents and extract doc_types
# Note: This could be optimized with a facet/aggregation query if Qdrant adds support
try:
scroll_results, _next_offset = await qdrant_client.scroll(
collection_name=collection,
scroll_filter=Filter(
must=[
get_placeholder_filter(), # Exclude placeholders from doc_type discovery
FieldCondition(key="user_id", match=MatchValue(value=user_id)),
]
),
limit=1000, # Sample size to discover types
with_payload=["doc_type"],
with_vectors=False, # Don't need vectors for type discovery
)
doc_types: set[str] = {
str(point.payload.get("doc_type"))
for point in scroll_results
if point.payload and point.payload.get("doc_type")
}
logger.debug(f"Found indexed document types for user {user_id}: {doc_types}")
return doc_types
except Exception as e:
logger.warning(f"Failed to query Qdrant for doc_types: {e}")
return set()
@dataclass
class SearchResult:
"""A single search result with metadata and score.
Attributes:
id: Document ID (int for all document types)
doc_type: Document type (note, file, calendar, contact, etc.)
title: Document title
excerpt: Content excerpt showing match context
score: Relevance score (≥ 0.0, higher is better)
- RRF fusion: scores in [0.0, 1.0]
- DBSF fusion: scores can exceed 1.0 (sum of normalized scores)
metadata: Additional algorithm-specific metadata
chunk_start_offset: Character position where chunk starts (None if not available)
chunk_end_offset: Character position where chunk ends (None if not available)
page_number: Page number for PDF documents (None for other doc types)
page_count: Total number of pages in PDF document (None for other doc types)
chunk_index: Zero-based index of this chunk in the document
total_chunks: Total number of chunks in the document
point_id: Qdrant point ID for batch vector retrieval (None if not from Qdrant)
"""
id: int
doc_type: str
title: str
excerpt: str
score: float
metadata: dict[str, Any] | None = None
chunk_start_offset: int | None = None
chunk_end_offset: int | None = None
page_number: int | None = None
page_count: int | None = None
chunk_index: int = 0
total_chunks: int = 1
point_id: str | None = None
def __post_init__(self):
"""Validate score is non-negative.
Note: Different fusion methods produce different score ranges:
- RRF (Reciprocal Rank Fusion): Bounded to [0.0, 1.0]
- DBSF (Distribution-Based Score Fusion): Unbounded (can exceed 1.0)
DBSF sums normalized scores from multiple systems, so scores can be
1.5, 2.0, etc. when multiple systems agree a document is highly relevant.
"""
if self.score < 0.0:
raise ValueError(f"Score must be non-negative, got {self.score}")
class SearchAlgorithm(ABC):
"""Abstract base class for search algorithms.
All search algorithms must implement the search() method with consistent
interface, allowing them to be used interchangeably.
Attributes:
query_embedding: The query embedding generated during the last search.
Available after search() completes for algorithms that use embeddings.
Can be reused by callers to avoid redundant embedding generation.
"""
query_embedding: list[float] | None = None
@abstractmethod
async def search(
self,
query: str,
user_id: str,
limit: int = 10,
doc_type: str | None = None,
**kwargs: Any,
) -> list[SearchResult]:
"""Execute search with the given parameters.
Args:
query: Search query string
user_id: User ID for multi-tenant filtering
limit: Maximum number of results to return
doc_type: Optional document type filter (note, file, calendar, etc.)
**kwargs: Algorithm-specific parameters
Returns:
List of SearchResult objects ranked by relevance
Raises:
McpError: If search fails or configuration is invalid
"""
pass
@property
@abstractmethod
def name(self) -> str:
"""Return algorithm name for identification."""
pass
@property
def supports_scoring(self) -> bool:
"""Whether this algorithm provides meaningful relevance scores.
Default: True. Override if algorithm doesn't support scoring.
"""
return True
@property
def requires_vector_db(self) -> bool:
"""Whether this algorithm requires vector database.
Default: False. Override for semantic search.
"""
return False