"""Integration tests for RAG pipeline with multiple LLM providers.
These tests validate the complete semantic search and MCP sampling flow using:
1. MCP server's built-in semantic search (embeddings handled server-side)
2. MCP sampling for answer generation (any generation-capable provider)
3. Pre-indexed Nextcloud User Manual as the knowledge base
Usage:
# Run with OpenAI (including GitHub Models API)
OPENAI_API_KEY=... pytest tests/integration/test_rag.py --provider=openai -v
# Run with Ollama
OLLAMA_BASE_URL=http://localhost:11434 OLLAMA_GENERATION_MODEL=llama3.2:1b \\
pytest tests/integration/test_rag.py --provider=ollama -v
# Run with Anthropic
ANTHROPIC_API_KEY=... pytest tests/integration/test_rag.py --provider=anthropic -v
# Run with AWS Bedrock
AWS_REGION=us-east-1 BEDROCK_GENERATION_MODEL=... \\
pytest tests/integration/test_rag.py --provider=bedrock -v
Environment Variables:
See tests/integration/provider_fixtures.py for provider-specific configuration.
RAG_MANUAL_PATH: Path to manual PDF in Nextcloud (default: "Nextcloud Manual.pdf")
Prerequisites:
- Nextcloud User Manual PDF uploaded to Nextcloud
- VECTOR_SYNC_ENABLED=true on the MCP server
- Provider-specific environment variables set
"""
import json
import logging
import os
from pathlib import Path
from typing import Any, AsyncGenerator
import anyio
import pytest
from mcp import ClientSession
from nextcloud_mcp_server.providers.base import Provider
from tests.conftest import create_mcp_client_session
from tests.integration.provider_fixtures import create_generation_provider
from tests.integration.sampling_support import create_sampling_callback
logger = logging.getLogger(__name__)
# Default path to the Nextcloud User Manual PDF
DEFAULT_MANUAL_PATH = "Nextcloud Manual.pdf"
async def llm_judge(
provider: Provider,
ground_truth: str,
system_output: str,
) -> bool:
"""Use LLM to judge if system output aligns with ground truth.
Args:
provider: Any provider with generation capability
ground_truth: The expected/reference answer
system_output: The system's actual output to evaluate
Returns:
True if output aligns with ground truth, False otherwise
"""
prompt = f"""GROUND TRUTH: {ground_truth}
SYSTEM OUTPUT: {system_output}
Does the system output contain the key facts from the ground truth?
Answer: TRUE or FALSE"""
logger.info("Received ground truth: %s", ground_truth)
logger.info("Received system output: %s", system_output)
response = await provider.generate(prompt, max_tokens=10)
logger.info("LLM Judge response: %s", response)
return "TRUE" in response.upper()
# Mark all tests as integration tests
pytestmark = [
pytest.mark.integration,
pytest.mark.rag,
]
# Ground truth fixture path
FIXTURES_DIR = Path(__file__).parent / "fixtures"
GROUND_TRUTH_FILE = FIXTURES_DIR / "nextcloud_manual_ground_truth.json"
@pytest.fixture(scope="module")
def ground_truth_qa():
"""Load ground truth Q&A pairs for the Nextcloud manual."""
if not GROUND_TRUTH_FILE.exists():
pytest.skip(f"Ground truth file not found: {GROUND_TRUTH_FILE}")
with open(GROUND_TRUTH_FILE) as f:
return json.load(f)
@pytest.fixture(scope="module")
async def indexed_manual_pdf(nc_client, nc_mcp_client):
"""Ensure the Nextcloud User Manual PDF is tagged and indexed for vector search.
This fixture:
1. Gets file info for the manual PDF
2. Creates/gets the 'vector-index' tag
3. Assigns the tag to the file
4. Waits for vector sync to complete indexing
Environment Variables:
RAG_MANUAL_PATH: Path to manual PDF in Nextcloud (default: Nextcloud Manual.pdf)
"""
manual_path = os.getenv("RAG_MANUAL_PATH", DEFAULT_MANUAL_PATH)
logger.info(f"Setting up indexed manual PDF: {manual_path}")
# Get file info to verify file exists and get file ID
file_info = await nc_client.webdav.get_file_info(manual_path)
if not file_info:
pytest.skip(f"Manual PDF not found at '{manual_path}'")
file_id = file_info["id"]
logger.info(f"Found manual PDF: {manual_path} (file_id={file_id})")
# Create or get the vector-index tag
tag = await nc_client.webdav.get_or_create_tag("vector-index")
tag_id = tag["id"]
logger.info(f"Using tag 'vector-index' (tag_id={tag_id})")
# Assign tag to file
await nc_client.webdav.assign_tag_to_file(file_id, tag_id)
logger.info(f"Tagged file {file_id} with vector-index tag")
# Wait for vector sync to complete indexing
max_attempts = 60
poll_interval = 10
logger.info("Waiting for vector sync to index the manual...")
for attempt in range(1, max_attempts + 1):
try:
# Call the MCP tool via the existing client session
result = await nc_mcp_client.call_tool(
"nc_get_vector_sync_status",
arguments={},
)
if not result.isError:
content = result.structuredContent or {}
indexed = content.get("indexed_count", 0)
pending = content.get("pending_count", 1)
logger.info(
f"Attempt {attempt}/{max_attempts}: "
f"indexed={indexed}, pending={pending}"
)
if indexed > 0 and pending == 0:
logger.info(
f"Vector indexing complete: {indexed} documents indexed"
)
break
except Exception as e:
logger.warning(f"Attempt {attempt}: Error checking status: {e}")
if attempt < max_attempts:
await anyio.sleep(poll_interval)
else:
logger.warning(
f"Vector indexing may not be complete after {max_attempts} attempts"
)
yield {
"path": manual_path,
"file_id": file_id,
"tag_id": tag_id,
}
@pytest.fixture(scope="module")
def provider_name(request) -> str:
"""Get the provider name from --provider flag.
Raises pytest.skip if --provider not specified.
"""
name = request.config.getoption("--provider")
if not name:
pytest.skip("--provider flag required (openai, ollama, anthropic, bedrock)")
return name
@pytest.fixture(scope="module")
async def generation_provider(provider_name: str) -> AsyncGenerator[Provider, None]:
"""Provider configured for text generation.
Requires --provider flag to be set.
"""
provider = await create_generation_provider(provider_name)
yield provider
await provider.close()
@pytest.fixture(scope="module")
async def nc_mcp_client_with_sampling(
anyio_backend, generation_provider, provider_name
) -> AsyncGenerator[ClientSession, Any]:
"""MCP client with sampling support using the specified provider.
This fixture creates an MCP client that can handle sampling requests
from the server using the configured generation provider.
"""
sampling_callback = create_sampling_callback(generation_provider)
async for session in create_mcp_client_session(
url="http://localhost:8000/mcp",
client_name=f"Sampling MCP ({provider_name})",
sampling_callback=sampling_callback,
):
yield session
async def test_semantic_search_retrieval(
nc_mcp_client, ground_truth_qa, indexed_manual_pdf, generation_provider
):
"""Test that semantic search retrieves relevant documents from the manual.
This tests the retrieval component of RAG - ensuring that queries
return relevant chunks from the indexed Nextcloud User Manual.
"""
# Use first query from ground truth
test_case = ground_truth_qa[0] # 2FA question
query = test_case["query"]
# Perform semantic search via MCP tool
result = await nc_mcp_client.call_tool(
"nc_semantic_search",
arguments={
"query": query,
"limit": 5,
"score_threshold": 0.0,
},
)
assert result.isError is False, f"Tool call failed: {result}"
data = result.structuredContent
# Verify we got results
assert data["success"] is True
assert data["total_found"] > 0, f"No results for query: {query}"
assert len(data["results"]) > 0
# Use LLM judge to evaluate if excerpts are relevant to ground truth
all_excerpts = " ".join([r["excerpt"] for r in data["results"]])
is_relevant = await llm_judge(
generation_provider,
test_case["ground_truth"],
all_excerpts,
)
assert is_relevant, f"LLM judge: excerpts not relevant to query: {query}"
async def test_semantic_search_answer_with_sampling(
nc_mcp_client_with_sampling,
ground_truth_qa,
indexed_manual_pdf,
generation_provider,
):
"""Test semantic search with MCP sampling for answer generation.
This tests the full RAG pipeline:
1. Semantic search retrieves relevant documents
2. MCP sampling generates an answer from the retrieved context
3. Provider generates the answer via the sampling callback
Uses nc_mcp_client_with_sampling which has sampling enabled.
"""
# Use the 2FA question - has clear expected answer
test_case = ground_truth_qa[0]
query = test_case["query"]
result = await nc_mcp_client_with_sampling.call_tool(
"nc_semantic_search_answer",
arguments={
"query": query,
"limit": 5,
"score_threshold": 0.0,
"max_answer_tokens": 300,
},
)
assert result.isError is False, f"Tool call failed: {result}"
data = result.structuredContent
# Verify response structure
assert data["success"] is True
assert "query" in data
assert "generated_answer" in data
assert "sources" in data
assert "search_method" in data
# Check for either successful sampling or graceful fallback
fallback_methods = {
"semantic_sampling_unsupported",
"semantic_sampling_user_declined",
"semantic_sampling_timeout",
"semantic_sampling_mcp_error",
"semantic_sampling_fallback",
}
if data["search_method"] in fallback_methods:
# Fallback mode - verify sources still returned
assert len(data["sources"]) > 0, "Expected sources even in fallback mode"
pytest.skip(
f"MCP sampling not available (method: {data['search_method']}), "
f"but retrieval succeeded with {len(data['sources'])} sources"
)
else:
# Successful sampling - verify answer quality
assert data["search_method"] == "semantic_sampling"
assert data["generated_answer"] is not None
assert len(data["generated_answer"]) > 50 # Non-trivial answer
# Use LLM judge to evaluate answer relevance
is_relevant = await llm_judge(
generation_provider,
test_case["ground_truth"],
data["generated_answer"],
)
assert is_relevant, f"LLM judge: answer not relevant to query: {query}"
@pytest.mark.parametrize(
"qa_index,min_expected_results",
[
(0, 1), # 2FA question
(1, 1), # File quotas question
(2, 1), # Linux installation question
(3, 1), # Windows requirements question
(4, 1), # Client apps with 2FA question
],
)
async def test_retrieval_quality_all_queries(
nc_mcp_client, ground_truth_qa, indexed_manual_pdf, qa_index, min_expected_results
):
"""Test retrieval quality for all ground truth queries.
Validates that each query returns at least the minimum expected
number of relevant results from the Nextcloud manual.
"""
if qa_index >= len(ground_truth_qa):
pytest.skip(f"Ground truth index {qa_index} not available")
test_case = ground_truth_qa[qa_index]
query = test_case["query"]
result = await nc_mcp_client.call_tool(
"nc_semantic_search",
arguments={
"query": query,
"limit": 5,
"score_threshold": 0.0,
},
)
assert result.isError is False
data = result.structuredContent
assert data["total_found"] >= min_expected_results, (
f"Query '{query}' returned {data['total_found']} results, "
f"expected at least {min_expected_results}"
)
async def test_no_results_for_unrelated_query(nc_mcp_client, indexed_manual_pdf):
"""Test that completely unrelated queries return low/no scores.
The Nextcloud manual shouldn't have relevant content for
quantum physics queries.
"""
result = await nc_mcp_client.call_tool(
"nc_semantic_search",
arguments={
"query": "quantum entanglement hadron collider particle physics",
"limit": 5,
"score_threshold": 0.5, # Higher threshold to filter irrelevant
},
)
assert result.isError is False
data = result.structuredContent
# Should have few or no high-scoring results
# Low score threshold means we might get some results, but they should be low quality
if data["total_found"] > 0:
# If results exist, they should have low scores
max_score = max(r["score"] for r in data["results"])
assert max_score < 0.8, f"Unexpected high score {max_score} for unrelated query"