"""Integration tests for Qdrant collection auto-creation.
These tests validate that:
1. Collections are automatically created on first access
2. Dimension validation detects mismatches
3. Idempotent initialization (multiple calls don't fail)
4. Proper error handling and logging
"""
from unittest.mock import Mock
import pytest
from nextcloud_mcp_server.vector.qdrant_client import get_qdrant_client
pytestmark = pytest.mark.integration
@pytest.fixture(autouse=True)
async def reset_singleton():
"""Reset the global Qdrant client singleton between tests."""
global _qdrant_client
import nextcloud_mcp_server.vector.qdrant_client as qdrant_module
# Store original
original = qdrant_module._qdrant_client
# Reset for test
qdrant_module._qdrant_client = None
yield
# Restore original
qdrant_module._qdrant_client = original
@pytest.mark.integration
async def test_collection_auto_created_on_first_access(monkeypatch):
"""Test that collection is automatically created if it doesn't exist."""
# Mock settings
from nextcloud_mcp_server.config import Settings
mock_settings = Settings(
qdrant_location=":memory:",
ollama_embedding_model="nomic-embed-text",
vector_sync_enabled=False, # Disable background sync for test
)
monkeypatch.setattr(
"nextcloud_mcp_server.vector.qdrant_client.get_settings", lambda: mock_settings
)
# Mock embedding service - must have .provider attribute
from nextcloud_mcp_server.embedding import SimpleEmbeddingProvider
mock_provider = SimpleEmbeddingProvider(dimension=384)
mock_embedding_service = Mock()
mock_embedding_service.provider = mock_provider
mock_embedding_service.get_dimension = lambda: mock_provider.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service,
)
# Get client (should trigger collection creation)
client = await get_qdrant_client()
# Verify client is initialized
assert client is not None
# Verify collection was created
collection_name = mock_settings.get_collection_name()
collections = await client.get_collections()
collection_names = [c.name for c in collections.collections]
assert collection_name in collection_names
# Verify collection has correct dimensions
collection_info = await client.get_collection(collection_name)
assert collection_info.config.params.vectors.size == 384
@pytest.mark.integration
async def test_existing_collection_reused(monkeypatch):
"""Test that existing collection is reused without error."""
# Mock settings
from nextcloud_mcp_server.config import Settings
mock_settings = Settings(
qdrant_location=":memory:",
ollama_embedding_model="nomic-embed-text",
vector_sync_enabled=False,
)
monkeypatch.setattr(
"nextcloud_mcp_server.vector.qdrant_client.get_settings", lambda: mock_settings
)
# Mock embedding service - must have .provider attribute
from nextcloud_mcp_server.embedding import SimpleEmbeddingProvider
mock_provider = SimpleEmbeddingProvider(dimension=384)
mock_embedding_service = Mock()
mock_embedding_service.provider = mock_provider
mock_embedding_service.get_dimension = lambda: mock_provider.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service,
)
# First call - creates collection
_ = await get_qdrant_client()
collection_name = mock_settings.get_collection_name()
# Reset singleton to simulate second initialization
import nextcloud_mcp_server.vector.qdrant_client as qdrant_module
qdrant_module._qdrant_client = None
# Second call - should reuse existing collection
client2 = await get_qdrant_client()
# Verify both clients work
assert client2 is not None
# Verify collection still exists and wasn't recreated
collections = await client2.get_collections()
collection_names = [c.name for c in collections.collections]
assert collection_name in collection_names
# Verify dimensions unchanged
collection_info = await client2.get_collection(collection_name)
assert collection_info.config.params.vectors.size == 384
@pytest.mark.integration
async def test_dimension_mismatch_detected(monkeypatch, tmp_path):
"""Test that dimension mismatch raises clear error."""
# Use persistent temp directory so collection survives client reset
from nextcloud_mcp_server.config import Settings
qdrant_path = str(tmp_path / "qdrant_data")
mock_settings = Settings(
qdrant_location=qdrant_path,
ollama_embedding_model="nomic-embed-text",
vector_sync_enabled=False,
)
monkeypatch.setattr(
"nextcloud_mcp_server.vector.qdrant_client.get_settings", lambda: mock_settings
)
# First embedding service: 384 dimensions
from nextcloud_mcp_server.embedding import SimpleEmbeddingProvider
mock_provider_1 = SimpleEmbeddingProvider(dimension=384)
mock_embedding_service_1 = Mock()
mock_embedding_service_1.provider = mock_provider_1
mock_embedding_service_1.get_dimension = lambda: mock_provider_1.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service_1,
)
# First call - creates collection with 384 dimensions
client1 = await get_qdrant_client()
collection_name = mock_settings.get_collection_name()
# Verify collection created
collection_info = await client1.get_collection(collection_name)
assert collection_info.config.params.vectors.size == 384
# Close client1 to release file lock
await client1.close()
# Reset singleton (but collection persists in temp directory)
import nextcloud_mcp_server.vector.qdrant_client as qdrant_module
qdrant_module._qdrant_client = None
# Change embedding service to different dimension (768)
mock_provider_2 = SimpleEmbeddingProvider(dimension=768)
mock_embedding_service_2 = Mock()
mock_embedding_service_2.provider = mock_provider_2
mock_embedding_service_2.get_dimension = lambda: mock_provider_2.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service_2,
)
# Second call - should detect dimension mismatch and raise error
with pytest.raises(ValueError) as exc_info:
await get_qdrant_client()
# Verify error message is helpful
error_msg = str(exc_info.value)
assert "Dimension mismatch" in error_msg
assert "384" in error_msg # Old dimension
assert "768" in error_msg # New dimension
assert "Solutions:" in error_msg # Includes helpful solutions
@pytest.mark.integration
async def test_idempotent_initialization(monkeypatch):
"""Test that multiple calls to get_qdrant_client() are idempotent."""
# Mock settings
from nextcloud_mcp_server.config import Settings
mock_settings = Settings(
qdrant_location=":memory:",
ollama_embedding_model="nomic-embed-text",
vector_sync_enabled=False,
)
monkeypatch.setattr(
"nextcloud_mcp_server.vector.qdrant_client.get_settings", lambda: mock_settings
)
# Mock embedding service - must have .provider attribute
from nextcloud_mcp_server.embedding import SimpleEmbeddingProvider
mock_provider = SimpleEmbeddingProvider(dimension=384)
mock_embedding_service = Mock()
mock_embedding_service.provider = mock_provider
mock_embedding_service.get_dimension = lambda: mock_provider.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service,
)
# Call multiple times
client1 = await get_qdrant_client()
client2 = await get_qdrant_client()
client3 = await get_qdrant_client()
# All should return same singleton instance
assert client1 is client2
assert client2 is client3
# Collection should exist
collection_name = mock_settings.get_collection_name()
collections = await client1.get_collections()
collection_names = [c.name for c in collections.collections]
assert collection_name in collection_names
@pytest.mark.integration
async def test_collection_name_generation(monkeypatch):
"""Test that collection name is correctly generated from deployment ID and model."""
# Mock settings with custom deployment ID
from nextcloud_mcp_server.config import Settings
mock_settings = Settings(
qdrant_location=":memory:",
ollama_embedding_model="test-model",
vector_sync_enabled=False,
)
# Mock deployment ID
monkeypatch.setenv("MCP_DEPLOYMENT_ID", "test-deployment")
monkeypatch.setattr(
"nextcloud_mcp_server.vector.qdrant_client.get_settings", lambda: mock_settings
)
# Mock embedding service - must have .provider attribute
from nextcloud_mcp_server.embedding import SimpleEmbeddingProvider
mock_provider = SimpleEmbeddingProvider(dimension=384)
mock_embedding_service = Mock()
mock_embedding_service.provider = mock_provider
mock_embedding_service.get_dimension = lambda: mock_provider.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service,
)
# Get client
client = await get_qdrant_client()
# Verify collection name includes deployment ID and model
collection_name = mock_settings.get_collection_name()
assert "test-deployment" in collection_name or "test-model" in collection_name
# Verify collection was created with that name
collections = await client.get_collections()
collection_names = [c.name for c in collections.collections]
assert collection_name in collection_names
@pytest.mark.integration
async def test_collection_uses_cosine_distance(monkeypatch):
"""Test that created collection uses COSINE distance metric."""
# Mock settings
from nextcloud_mcp_server.config import Settings
mock_settings = Settings(
qdrant_location=":memory:",
ollama_embedding_model="nomic-embed-text",
vector_sync_enabled=False,
)
monkeypatch.setattr(
"nextcloud_mcp_server.vector.qdrant_client.get_settings", lambda: mock_settings
)
# Mock embedding service - must have .provider attribute
from nextcloud_mcp_server.embedding import SimpleEmbeddingProvider
mock_provider = SimpleEmbeddingProvider(dimension=384)
mock_embedding_service = Mock()
mock_embedding_service.provider = mock_provider
mock_embedding_service.get_dimension = lambda: mock_provider.get_dimension()
monkeypatch.setattr(
"nextcloud_mcp_server.embedding.get_embedding_service",
lambda: mock_embedding_service,
)
# Get client (creates collection)
client = await get_qdrant_client()
# Verify collection uses COSINE distance
collection_name = mock_settings.get_collection_name()
collection_info = await client.get_collection(collection_name)
from qdrant_client.models import Distance
assert collection_info.config.params.vectors.distance == Distance.COSINE