Skip to main content
Glama
caretdev

InterSystems IRIS MCP Server

interoperability_production_logs

Retrieve and analyze InterSystems IRIS MCP Server interoperability production logs, filtering by log type (info, alert, error, warning) and setting query limits for efficient monitoring and troubleshooting.

Instructions

Get Interoperability Production logs

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
item_nameNo
limitNo
log_type_alertNo
log_type_errorNo
log_type_infoNo
log_type_warningNo

Implementation Reference

  • Handler function that executes the tool logic by querying the Ens_Util.Log table for Interoperability Production logs based on filters like item_name, limit, and log types.
    @server.tool(description="Get Interoperability Production logs") async def interoperability_production_logs( ctx: Context, item_name: str = None, limit: int = 10, log_type_info: bool = False, log_type_alert: bool = False, log_type_error: bool = True, log_type_warning: bool = True, ) -> str: logs = [] log_type = [] log_type_info and log_type.append(LogType.Info.value) log_type_alert and log_type.append(LogType.Alert.value) log_type_error and log_type.append(LogType.Error.value) log_type_warning and log_type.append(LogType.Warning.value) db = ctx.db with db.cursor() as cur: sql = f""" select top ? TimeLogged , %External(Type) Type, ConfigName, Text from Ens_Util.Log where {"ConfigName = ?" if item_name else "1=1"} {f"and type in ({', '.join(['?'] * len(log_type))})" if log_type else ""} order by id desc """ params = [limit, *([item_name] if item_name else []), *log_type] cur.execute(sql, params) for row in cur.fetchall(): logs.append(f"{row[0]} {row[1]} {row[2]} {row[3]}") return "\n".join(logs)
  • Calls the init function imported from interoperability.py, which registers all Interoperability tools including interoperability_production_logs using @server.tool decorators.
    interoperability(server, logger)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/caretdev/mcp-server-iris'

If you have feedback or need assistance with the MCP directory API, please join our Discord server