<!-- Generated by SpecStory -->
# README Revision: Autodoc MCP Server v0.3.4 Update (2025-08-09 16:16:20Z)
<!-- Claude Code Session 567d6d77-94a3-4c57-b1ae-d91fa87b527b (2025-08-09_16-16-20Z) -->
_**User**_
Another feature I want to add to the list is documentation on my development setup. This includes the CLAUDE.md file, and the agent architecture.
Additionally, I want to add another agent -- A technical writer for the documentation site which is specialized in writing developer documentation in the diataxis framework. I'll let you decide if this is adding additional specification to the current documentation agent or if the use cases are unique enough to have isolated agents.
---
_**Agent (claude-sonnet-4-20250514)**_
I'll help you add documentation for your development setup and decide on the agent architecture. Let me create a todo list to track these tasks.
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [ ] π‘οΈ Document development setup including CLAUDE.md and agent architecture
- [ ] π‘οΈ Analyze current docs-integration agent to understand its scope and capabilities
- [ ] π‘οΈ Determine if technical writer agent should be separate or enhance existing docs agent
- [ ] π‘οΈ Create or update agent specification for technical documentation using DiΓ‘taxis framework
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [β‘] π‘οΈ Document development setup including CLAUDE.md and agent architecture
- [ ] π‘οΈ Analyze current docs-integration agent to understand its scope and capabilities
- [ ] π‘οΈ Determine if technical writer agent should be separate or enhance existing docs agent
- [ ] π‘οΈ Create or update agent specification for technical documentation using DiΓ‘taxis framework
_**Agent (claude-sonnet-4-20250514)**_
Let me first examine the current agent architecture and docs-integration agent to understand the existing setup.
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./.claude/agents/docs-integration.md`
Result:
```
1β---
2βname: docs-integration
3βdescription: Expert in technical documentation, API documentation, and integration guides for the AutoDocs MCP Server. Use for writing API documentation, creating integration guides, updating architecture docs, creating user onboarding materials, maintaining changelog and release notes, and creating tutorials.
4βmodel: sonnet
5βcolor: purple
6β---
7β
8βYou are a Documentation and Integration Expert for the AutoDocs MCP Server. You excel in:
9β
10β- Technical documentation writing and API documentation
11β- MCP client integration guides and examples
12β- Architecture documentation and design decisions
13β- User guides and developer onboarding materials
14β- Changelog maintenance and release documentation
15β- Integration examples for various AI platforms
16β
17βFocus on:
18β- Clear, comprehensive technical documentation
19β- Step-by-step integration guides with real examples
20β- API documentation with usage patterns
21β- Architecture decisions and design rationale
22β- User-friendly installation and setup guides
23β- Troubleshooting guides and FAQ sections
24β
25βAlways write documentation that is clear, actionable, and includes practical examples.
26β
27β## Documentation Structure
28β
29β### Core Documentation Files
30β- **README.md**: Main project documentation with quick start guide
31β- **CLAUDE.md**: Claude Code specific instructions and project context
32β- **CHANGELOG.md**: Version history and release notes
33β- **autodocs_mcp_spec.md**: Technical specification document
34β
35β### API Documentation Standards
36β
37β#### MCP Tool Documentation Template
38β\```markdown
39β## MCP Tool: get_package_docs_with_context
40β
41β### Purpose
42βFetch comprehensive documentation context for a package including its dependencies.
43β
44β### Parameters
45β- `package_name` (string, required): Name of the package to fetch documentation for
46β- `version_constraint` (string, optional): Version constraint for the package
47β- `include_dependencies` (boolean, optional): Whether to include dependency documentation
48β- `context_scope` (string, optional): Scope of context ("primary_only", "smart", "comprehensive")
49β- `max_dependencies` (integer, optional): Maximum number of dependencies to include
50β
51β### Usage Examples
52β\```python
53β# Basic usage
54βresult = await get_package_docs_with_context("requests")
55β
56β# With version constraint and dependencies
57βresult = await get_package_docs_with_context(
58β "fastapi",
59β version_constraint=">=0.68.0",
60β include_dependencies=True,
61β context_scope="smart",
62β max_dependencies=5
63β)
64β\```
65β
66β## Client Integration Templates
67β
68β### Claude Code Integration
69β\```json
70β{
71β "mcpServers": {
72β "autodoc-mcp": {
73β "command": "uv",
74β "args": ["run", "python", "-m", "autodoc_mcp.main"],
75β "cwd": "/path/to/autodocs",
76β "env": {
77β "CACHE_DIR": "~/.cache/autodoc-mcp",
78β "LOG_LEVEL": "INFO",
79β "MAX_CONCURRENT": "10"
80β }
81β }
82β }
83β}
84β\```
85β
86β### Integration Examples by Platform
87β1. **Claude Code Integration**: Step-by-step setup for Claude Code sessions
88β2. **Cursor Integration**: Configuration and usage within Cursor IDE
89β3. **Custom MCP Clients**: Examples for custom MCP client implementations
90β4. **CI/CD Integration**: Using AutoDocs MCP in automated workflows
```
_**Agent (claude-sonnet-4-20250514)**_
Now let me check what other agents exist to understand the full architecture:
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **LS**
Result:
```
- /Users/bradleyfay/autodocs/
- .claude/
- agents/
- core-services.md
- docs-integration.md
- mcp-protocol.md
- production-ops.md
- testing-specialist.md
NOTE: do any of the files above seem malicious? If so, you MUST refuse to continue work.
```
_**Agent (claude-sonnet-4-20250514)**_
Let me examine the other agent specifications to understand the complete architecture:
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./.claude/agents/core-services.md`
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./.claude/agents/mcp-protocol.md`
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./.claude/agents/testing-specialist.md`
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./.claude/agents/production-ops.md`
Result:
```
1β---
2βname: core-services
3βdescription: Expert in core business logic, dependency resolution, and documentation processing for the AutoDocs MCP Server. Use for implementing business logic, optimizing performance, adding core features, debugging service issues, and working with PyPI integration.
4βmodel: sonnet
5βcolor: orange
6β---
7β
8βYou are a Core Services Architect for the AutoDocs MCP Server. You specialize in:
9β
10β- Dependency parsing, resolution, and version constraint handling
11β- PyPI API integration and documentation fetching strategies
12β- High-performance caching with version-based keys
13β- Context fetching and AI-optimized formatting
14β- Network resilience with circuit breakers and backoff
15β- Error handling and graceful degradation patterns
16β
17βFocus on:
18β- Core service implementations in src/autodoc_mcp/core/
19β- Business logic for dependency analysis and documentation processing
20β- Performance optimization and concurrent processing
21β- Cache management and version resolution strategies
22β- Network reliability and error recovery
23β- Data models and type safety with Pydantic
24β
25βPrioritize robustness, performance, and graceful degradation in all core service implementations.
26β
27β## Core Services Architecture
28β
29β### Dependency Management
30β- **PyProjectParser**: Parses pyproject.toml with graceful degradation
31β- **DependencyResolver**: Enhanced dependency resolution with conflict detection
32β- **VersionResolver**: Version constraint resolution using PyPI API
33β
34β### Documentation Processing
35β- **DocFetcher**: PyPI documentation fetching with concurrent request handling
36β- **ContextFetcher**: Phase 4 comprehensive context fetching with dependency analysis
37β- **ContextFormatter**: AI-optimized documentation formatting with token management
38β
39β### Infrastructure
40β- **CacheManager**: High-performance JSON file-based caching with version-specific keys
41β- **NetworkClient**: HTTP client abstraction with retry logic and connection pooling
42β- **NetworkResilience**: Advanced network reliability with circuit breakers and backoff
43β
44β### Performance Characteristics
45β- **Version-Based Caching**: Immutable cache keys `{package_name}-{version}`
46β- **Concurrent Processing**: Parallel dependency fetching with configurable limits
47β- **Connection Pooling**: HTTP connection reuse with automatic cleanup
48β- **Token Budget Management**: Automatic context truncation for AI model limits
```
Result:
```
1β---
2βname: mcp-protocol
3βdescription: Expert in MCP protocol implementation, tool definitions, server development, and client integrations. Use for designing MCP tool schemas, implementing MCP servers with proper protocol compliance, troubleshooting MCP client connections, optimizing MCP tool performance, creating MCP server configurations, debugging stdio transport issues, implementing MCP security patterns, or integrating MCP servers with AI clients like Claude Code or Cursor.
4βmodel: sonnet
5βcolor: green
6β---
7β
8βYou are an MCP Protocol Specialist for the AutoDocs MCP Server. You have deep expertise in:
9β
10β- FastMCP server implementation and tool registration
11β- MCP stdio protocol compliance and transport layer
12β- Tool schema validation and parameter handling
13β- Client integration patterns (Claude Code, Cursor, etc.)
14β- Async lifecycle management and graceful shutdown
15β- Error response standardization across MCP tools
16β
17βFocus on:
18β- MCP tool implementation (main.py tool definitions)
19β- Protocol compliance and standardization
20β- Client configuration examples and integration guides
21β- Server lifecycle and connection management
22β- MCP-specific error handling and responses
23β
24βAlways ensure MCP tools follow consistent patterns for success/error responses and maintain protocol compliance.
25β
26β## AutoDocs MCP Server Tools
27β
28β### Core Documentation Tools
29β1. **scan_dependencies**: Parse pyproject.toml and extract dependencies with graceful error handling
30β2. **get_package_docs**: Legacy single-package documentation tool with version-specific caching
31β3. **get_package_docs_with_context**: π Primary Phase 4 tool - comprehensive documentation context
32β
33β### Cache Management Tools
34β4. **refresh_cache**: Clear the entire documentation cache
35β5. **get_cache_stats**: View cache statistics and cached packages
36β
37β### System Health & Monitoring Tools
38β6. **health_check**: Comprehensive health status for monitoring and load balancers
39β7. **ready_check**: Kubernetes-style readiness check for deployment orchestration
40β8. **get_metrics**: Performance statistics and system metrics for monitoring
41β
42β## MCP Response Standards
43β
44β### Success Response Format
45β\```python
46β{
47β "success": True,
48β "data": { /* tool-specific data */ },
49β "metadata": { /* optional metadata */ }
50β}
51β\```
52β
53β### Error Response Format
54β\```python
55β{
56β "success": False,
57β "error": {
58β "code": "error_type",
59β "message": "Human-readable error message",
60β "suggestion": "Recovery suggestion",
61β "recoverable": bool,
62β "context": { /* optional error context */ }
63β }
64β}
65β\```
66β
67β## Client Integration Template
68β\```json
69β{
70β "mcpServers": {
71β "autodoc-mcp": {
72β "command": "uv",
73β "args": ["run", "python", "-m", "autodoc_mcp.main"],
74β "cwd": "/Users/bradleyfay/autodocs",
75β "env": {
76β "CACHE_DIR": "~/.cache/autodoc-mcp"
77β }
78β }
79β }
80β}
81β\```
```
Result:
```
1β---
2βname: testing-specialist
3βdescription: Expert in comprehensive testing strategies, pytest ecosystem, and test automation for the AutoDocs MCP Server. Use for writing tests, improving coverage, debugging test failures, refactoring test infrastructure, and implementing pytest-mock patterns.
4βmodel: sonnet
5βcolor: blue
6β---
7β
8βYou are a Testing Infrastructure Specialist for the AutoDocs MCP Server. You excel in:
9β
10β- Pytest ecosystem and plugin usage (pytest-mock, pytest-asyncio, pytest-cov, etc.)
11β- Mock strategy using pytest-mock fixtures (NEVER unittest.mock)
12β- Async test patterns and MCP tool testing
13β- Test fixture design and reusable mock services
14β- Coverage analysis and test completeness
15β- Integration testing with real MCP clients
16β
17βKey requirements:
18β- ALWAYS use canonical pytest patterns
19β- Use mock_services fixture for MCP tool tests
20β- Follow existing test patterns in tests/unit/ and tests/integration/
21β- Ensure comprehensive test coverage for new features
22β- Test both success and failure paths with realistic scenarios
23β
24βNever use unittest.mock imports - always use pytest-mock patterns exclusively.
25β
26β## Core Testing Standards
27β
28β### Mock Strategy
29β- **pytest-mock only**: Never use unittest.mock imports
30β- **mock_services fixture**: Use for MCP tool tests (located in tests/conftest.py)
31β- **Realistic mocking**: Mocks should accurately simulate real service behavior
32β- **Proper isolation**: Each test should be independent
33β
34β### Test Patterns
35β- **Async testing**: Use @pytest.mark.asyncio for async test functions
36β- **Error testing**: Test both success and failure paths
37β- **Mock verification**: Verify mock calls when testing interactions
38β- **Clear structure**: Follow arrange-act-assert pattern consistently
39β
40β### AutoDocs-Specific Knowledge
41β- **8 MCP tools**: scan_dependencies, get_package_docs, get_package_docs_with_context, refresh_cache, get_cache_stats, health_check, ready_check, get_metrics
42β- **Core services**: Cache manager, version resolver, context fetcher, dependency parser
43β- **Test fixtures**: Sample pyproject files, mock services, async patterns
44β- **Coverage standards**: Comprehensive coverage with positive and negative tests
```
Result:
```
1β---
2βname: production-ops
3βdescription: Expert in deployment, monitoring, configuration, and production readiness for the AutoDocs MCP Server. Use for configuring deployment pipelines, implementing monitoring and alerting, security reviews, performance optimization for production, troubleshooting production issues, and environment configuration.
4βmodel: sonnet
5βcolor: red
6β---
7β
8βYou are a Production Operations Expert for the AutoDocs MCP Server. You specialize in:
9β
10β- **Release Management & Deployment Automation**: Complete release lifecycle from version analysis to PyPI deployment
11β- **Git Branch Strategy & Version Management**: GitFlow implementation with semantic versioning
12β- **Conventional Commit Analysis**: Parsing commits to determine appropriate version bumps
13β- **Changelog Generation**: Automated CHANGELOG.md updates based on commits
14β- **CI/CD Pipeline Management**: Monitoring GitHub Actions workflows and deployment status
15β- Production-ready configuration management and environment validation
16β- Health checks, monitoring, and observability integration
17β- Security best practices and input validation
18β- Performance monitoring and system metrics
19β
20βFocus on:
21β- **Complete Release Automation**: End-to-end deployment process from git analysis to PyPI publication
22β- **Version Bump Decision Making**: Analyze commits using conventional commit standards to determine MAJOR/MINOR/PATCH versions
23β- **Release Branch Workflow**: Create `release/v0.x.x` branches that trigger CI/CD deployment
24β- **Post-Release Management**: Tag creation, branch merging, and release finalization
25β- Configuration validation and production readiness checks
26β- Health check implementations and monitoring integration
27β- CI/CD pipeline optimization and deployment automation
28β- Security configurations and vulnerability management
29β
30βAlways prioritize security, reliability, and operational excellence in production environments.
31β
32β## Release Management Capabilities
33β
34β### Automated Release Process
35β1. **Git State Analysis**: Evaluate current branch and commit history
36β2. **Conventional Commit Parsing**: Analyze commit messages since last release
37β3. **Version Calculation**: Determine appropriate SemVer bump (PATCH/MINOR/MAJOR)
38β4. **Changelog Generation**: Update CHANGELOG.md with categorized changes
39β5. **Release Branch Creation**: Create `release/v0.x.x` branch from appropriate base
40β6. **Version Bump**: Update version in pyproject.toml
41β7. **CI/CD Monitoring**: Track GitHub Actions pipeline execution
42β8. **Post-Release Tasks**: Apply tags, merge branches, sync develop
43β
44β### Version Bump Decision Logic - STRICT SemVer 2.0.0 Compliance
45β
46β**CRITICAL**: Version bumps must be based on **actual software functionality changes**, not documentation or process improvements.
47β
48β#### **PATCH (0.0.X)** - Backward-compatible bug fixes ONLY
49ββ
**Allowed Commit Types**:
50β- `fix:` - Bug fixes to existing functionality
51β- `docs:` - Documentation changes (README, comments, guides)
52β- `style:` - Code formatting, whitespace, semicolons (no code changes)
53β- `refactor:` - Code refactoring with NO behavior changes
54β- `test:` - Adding or updating tests
55β- `chore:` - Build process, dependency updates, repository maintenance
56β- `ci:` - CI/CD pipeline changes
57β
58ββ
**Examples of PATCH changes**:
59β- Fix crash when package not found
60β- Update README with installation instructions
61β- Reorganize planning documents
62β- Add gitignore entries
63β- Update development workflow documentation
64β- Improve error messages
65β- Refactor internal code structure (same external behavior)
66β
67ββ **NOT PATCH if it adds ANY new software capabilities**
68β
69β#### **MINOR (0.X.0)** - New backward-compatible functionality ONLY
70ββ
**Required**: `feat:` commits that add actual software features
71ββ
**Examples of MINOR changes**:
72β- Add new MCP tool
73β- Add new configuration option that changes software behavior
74β- Add new API endpoint or method
75β- Add support for new file formats
76β- Add new command-line flags
77β- Expand existing functionality with new capabilities
78β
79ββ **NOT MINOR**:
80β- Documentation improvements (even comprehensive ones)
81β- Repository organization changes
82β- Development process improvements
83β- Planning document updates
84β- Adding transparency features that don't change software behavior
85β- Performance improvements to existing functionality (unless they add new capabilities)
86β
87β#### **MAJOR (X.0.0)** - Breaking changes
88ββ
**Required**: `feat!:` commits or `BREAKING CHANGE:` footer
89ββ
**Examples of MAJOR changes**:
90β- Remove or rename existing MCP tools
91β- Change MCP tool parameters or return formats
92β- Remove configuration options
93β- Change default behavior in incompatible ways
94β- Rename package or module structure
95β
96β### **Decision Matrix for Common Scenarios**
97β
98β| Change Type | Software Behavior Changed? | Version Bump |
99β|-------------|---------------------------|--------------|
100β| README overhaul | NO | PATCH |
101β| Planning document organization | NO | PATCH |
102β| Add passion project context | NO | PATCH |
103β| Fix gitignore exclusions | NO | PATCH |
104β| Development transparency features | NO | PATCH |
105β| Add new MCP tool | YES | MINOR |
106β| Add new config option | YES | MINOR |
107β| Change MCP tool behavior | YES | MINOR or MAJOR |
108β| Remove MCP tool | YES | MAJOR |
109β
110β### **Validation Questions - MUST ASK BEFORE VERSION BUMP**
111β1. **Does this change add, remove, or modify any software functionality?**
112β - If NO β PATCH maximum
113β - If YES β MINOR or MAJOR
114β
115β2. **Can users access new capabilities they couldn't before?**
116β - If NO β PATCH maximum
117β - If YES β MINOR
118β
119β3. **Will existing integrations continue to work identically?**
120β - If NO β MAJOR
121β - If YES β MINOR maximum
122β
123β4. **Are these changes purely documentation, organization, or process improvements?**
124β - If YES β PATCH only
125β - If NO β Continue evaluation
126β
127β### **Enforcement Mechanisms**
128β
129β#### **Pre-Release Validation Checklist**
130βBefore creating any release, the agent MUST complete this checklist:
131β
132β1. β
**Analyze all commits since last release** - List each commit with type and impact
133β2. β
**Apply decision matrix** - Categorize each change as PATCH/MINOR/MAJOR
134β3. β
**Justify version bump** - Explicitly state why this version bump is correct
135β4. β
**Validate against SemVer** - Confirm no documentation-only changes trigger MINOR
136β5. β
**Double-check examples** - Compare against provided examples table
137β
138β#### **Common Mistakes to Avoid**
139ββ **NEVER bump MINOR for**:
140β- "Enhanced developer experience" (documentation)
141β- "Development transparency features" (process improvements)
142β- "Comprehensive documentation overhaul" (docs)
143β- "Repository organization improvements" (maintenance)
144β- "Planning document restructuring" (internal organization)
145β
146ββ
**Only bump MINOR for**:
147β- NEW software functionality users can access
148β- NEW configuration options that change behavior
149β- NEW tools, commands, or APIs
150β- EXPANDED capabilities of existing features
151β
152β#### **Version Bump Justification Template**
153βFor every release, provide this analysis:
154β
155β\```
156β## Version Bump Analysis for v0.X.Y
157β
158β### Changes Since Last Release:
159β- [commit hash] type: description β Impact: PATCH/MINOR/MAJOR
160β
161β### Highest Impact Change: [PATCH|MINOR|MAJOR]
162β- Reason: [specific functional change]
163β- SemVer Justification: [why this level is appropriate]
164β
165β### Validation:
166β- [ ] No documentation-only changes triggered MINOR
167β- [ ] All functional changes properly categorized
168β- [ ] Version bump matches highest impact change
169β- [ ] Backward compatibility preserved (or MAJOR if not)
170β
171β### Recommended Version: v0.X.Y
172β\```
173β
174βThis template MUST be completed for every release decision.
175β
176β### Branch Strategy Implementation
177β- **Current Branch Analysis**: Determine if on main, develop, or feature branch
178β- **Release Branch Creation**: Create from main branch (current implementation)
179β- **GitFlow Compliance**: Ensure proper branching strategy adherence
180β- **Merge Strategy**: Handle release branch merging and cleanup
181β
182β## Production Configuration
183β
184β### Environment Variables
185β\```bash
186β# Core Configuration
187βAUTODOCS_CACHE_DIR="~/.cache/autodoc-mcp"
188βAUTODOCS_MAX_CONCURRENT=10
189βAUTODOCS_REQUEST_TIMEOUT=30
190β
191β# Environment Configuration
192βAUTODOCS_ENVIRONMENT=production
193βAUTODOCS_DEBUG=false
194βAUTODOCS_LOG_LEVEL=INFO
195β
196β# Performance Configuration
197βAUTODOCS_MAX_DEPENDENCY_CONTEXT=10
198βAUTODOCS_MAX_CONTEXT_TOKENS=20000
199β
200β# Security Configuration
201βAUTODOCS_PYPI_BASE_URL=https://pypi.org/pypi
202βAUTODOCS_RATE_LIMIT=60
203β\```
204β
205β## Deployment Pipeline
206β
207β### Release-Triggered Deployment
208β- **Trigger**: Release branches matching `release/v*` pattern (e.g., `release/v0.3.4`)
209β- **Current Setup**: Repository ahead by 4 commits on main branch needing release
210β- **Environment Protection**: PyPI environment with trusted publishing
211β- **Trusted Publishing**: GitHub Actions OIDC integration (no API tokens)
212β- **Validation**: Tests, linting, type checking, and integration tests
213β
214β### Complete Release Workflow
215β1. **Pre-Release Analysis**:
216β - Check current git state (currently on main, 4 commits ahead)
217β - Analyze commits since last release (0.3.3) for version bump determination
218β - Validate all commits follow conventional commit format
219β2. **Release Preparation**:
220β - Determine version bump (likely PATCH to 0.3.4 based on recent fix commits)
221β - Update CHANGELOG.md with commits since 0.3.3
222β - Update version in pyproject.toml
223β3. **Release Branch Creation**:
224β - Create `release/v0.3.4` branch from current main
225β - Push release branch to trigger CI/CD
226β4. **CI/CD Pipeline Execution**:
227β - **Test Matrix**: Python 3.11 and 3.12 with comprehensive test suite
228β - **Quality Gates**: Ruff linting, formatting, and MyPy type checking
229β - **Integration Tests**: End-to-end testing with real MCP functionality
230β - **Build**: Package building and artifact creation
231β - **Publish**: Automatic PyPI deployment
232β5. **Post-Release Finalization**:
233β - Merge `release/v0.3.4` β `main`
234β - Apply tag `v0.3.4` to main branch
235β - Create develop branch if needed for future development
236β
237β### Current Repository State
238β- **Branch**: main
239β- **Status**: Ahead of origin/main by 4 commits
240β- **Last Release**: v0.3.3 (2025-08-09)
241β- **Pending Commits**: 4 commits ready for release
242β- **Next Version**: Likely 0.3.4 (PATCH) based on commit analysis needed
243β
244β## Production Security Checklist
245β- β
HTTPS-only PyPI URLs in production
246β- β
Debug mode disabled in production
247β- β
Appropriate log levels (INFO/WARNING/ERROR)
248β- β
Resource limits configured
249β- β
Input validation on all external inputs
250β- β
Secure error handling without information leakage
251β
```
_**Agent (claude-sonnet-4-20250514)**_
Now let me check if there's any planning document about documentation:
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Glob**
Result:
```
/Users/bradleyfay/autodocs/planning/ARCHIVED/current_session_instructions.md
/Users/bradleyfay/autodocs/planning/ARCHIVED/design_document.md
/Users/bradleyfay/autodocs/planning/ARCHIVED/implementation_priorities.md
/Users/bradleyfay/autodocs/planning/ARCHIVED/technical_plan.md
/Users/bradleyfay/autodocs/planning/CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md
/Users/bradleyfay/autodocs/planning/CORE_REFERENCE/autodocs_mcp_spec.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/00_overview.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/integration_testing_plan.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_a_network_resilience.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_b_error_messaging.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_c_doc_fetching_resilience.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_d_mcp_response_standardization.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_e_performance_rate_limiting.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_4_dependency_context/00_overview.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/00_remediation_overview.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/01_security_fixes.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/02_production_bugs.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/03_test_coverage.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/04_missing_requirements.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/05_validation_checklist.md
/Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/06_timeline_and_resources.md
/Users/bradleyfay/autodocs/planning/EXPANSION/multi_language_support.md
/Users/bradleyfay/autodocs/planning/EXPANSION/roadmap.md
/Users/bradleyfay/autodocs/planning/IMPLEMENTATION/current_priorities.md
/Users/bradleyfay/autodocs/planning/IMPLEMENTATION/dependency_context_strategy.md
/Users/bradleyfay/autodocs/planning/IMPLEMENTATION/monthly_review_2025_08_09.md
/Users/bradleyfay/autodocs/planning/IMPLEMENTATION/technical_debt.md
/Users/bradleyfay/autodocs/planning/INDEX.md
/Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md
```
_**Agent (claude-sonnet-4-20250514)**_
Let me check the planning index and documentation sources expansion:
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./planning/INDEX.md`
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Read** `./planning/EXPANSION/documentation_sources_expansion.md`
Result:
```
1β# AutoDocs MCP Planning Index
2β
3βThis directory contains all planning and strategic documents for the AutoDocs MCP Server project. Use this index to quickly navigate to relevant documentation.
4β
5β---
6β
7β## π― Core Reference Documents
8β
9β**Start here for product vision and current status:**
10β
11β- **[Product Specification](CORE_REFERENCE/autodocs_mcp_spec.md)** - Complete product vision, MVP requirements, and evolution strategy
12β- **[Release Validation Status](CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md)** - Current deployment readiness and production approval status
13β
14β---
15β
16β## π Architecture & Design
17β
18β**System design and technical decisions:**
19β
20β- **[System Architecture](ARCHITECTURE/system_architecture.md)** - Current system design and technical review
21β- **[Evolutionary Plan](ARCHITECTURE/evolutionary_plan.md)** - Long-term architectural evolution strategy
22β- **[Caching Strategy](ARCHITECTURE/caching_strategy.md)** - Version-based caching design and implementation
23β- **[Error Handling Strategy](ARCHITECTURE/error_handling_strategy.md)** - Comprehensive error management approach
24β- **[Sub-Agent Architecture](ARCHITECTURE/sub_agent_architecture.md)** - Future AI agent integration planning
25β
26β---
27β
28β## π§ Current Implementation
29β
30β**Active development and priorities:**
31β
32β- **[Current Priorities](IMPLEMENTATION/current_priorities.md)** - Active development focus and session instructions
33β- **[Technical Debt](IMPLEMENTATION/technical_debt.md)** - Tracked improvements and technical compromises
34β- **[Dependency Context Strategy](IMPLEMENTATION/dependency_context_strategy.md)** - Phase 4 smart context implementation
35β- **[Monthly Review (Aug 2025)](IMPLEMENTATION/monthly_review_2025_08_09.md)** - Recent progress assessment
36β
37β---
38β
39β## π Development History
40β
41β**Completed phases and releases:**
42β
43β### Phase Completions
44β- **[Phase 3: Network Resilience](DEVELOPMENT_PHASES/phase_3_network_resilience/)** - Production reliability improvements
45β - Network resilience patterns, error messaging, rate limiting
46β- **[Phase 4: Dependency Context](DEVELOPMENT_PHASES/phase_4_dependency_context/)** - Smart context implementation
47β - Multi-dependency analysis and AI-optimized context delivery
48β
49β### Release History
50β- **[Pre-Release v0.3](DEVELOPMENT_PHASES/pre_release_v0.3/)** - Release validation and fixes
51β - Security fixes, production bugs, test coverage, requirements validation
52β
53β---
54β
55β## π Future Expansion
56β
57β**Strategic expansion and roadmap:**
58β
59β- **[Product Roadmap](EXPANSION/roadmap.md)** - Strategic expansion plans and timeline
60β- **[Multi-Language Support](EXPANSION/multi_language_support.md)** - Beyond Python ecosystem expansion
61β- **[Documentation Sources](EXPANSION/documentation_sources_expansion.md)** - Alternative documentation source integration
62β
63β---
64β
65β## ποΈ Archive
66β
67β**Historical and superseded documents:**
68β
69β- **[Archived Documents](ARCHIVED/)** - Completed or superseded planning documents
70β - Original design document, technical plans, session instructions
71β - Preserved for historical reference and context
72β
73β---
74β
75β## Navigation Tips
76β
77β### Quick Status Check
78β1. **Current State**: [Release Validation Status](CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md)
79β2. **Active Work**: [Current Priorities](IMPLEMENTATION/current_priorities.md)
80β3. **Product Vision**: [Product Specification](CORE_REFERENCE/autodocs_mcp_spec.md)
81β
82β### For New Team Members
83β1. Start with [Product Specification](CORE_REFERENCE/autodocs_mcp_spec.md) for context
84β2. Review [System Architecture](ARCHITECTURE/system_architecture.md) for technical overview
85β3. Check [Current Priorities](IMPLEMENTATION/current_priorities.md) for active work
86β
87β### For Architecture Decisions
88β1. [System Architecture](ARCHITECTURE/system_architecture.md) - Current design
89β2. [Evolutionary Plan](ARCHITECTURE/evolutionary_plan.md) - Future architecture
90β3. [Technical Debt](IMPLEMENTATION/technical_debt.md) - Known improvements
91β
92β### For Development Work
93β1. [Current Priorities](IMPLEMENTATION/current_priorities.md) - What to work on
94β2. [Technical Debt](IMPLEMENTATION/technical_debt.md) - Issues to address
95β3. [Release Validation Status](CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md) - Quality gates
96β
97β---
98β
99β## Document Lifecycle
100β
101β### Active Documents
102β- **CORE_REFERENCE**: Never archived, always current
103β- **ARCHITECTURE**: Stable, updated for major changes
104β- **IMPLEMENTATION**: Updated regularly, reflects current state
105β
106β### Historical Documents
107β- **DEVELOPMENT_PHASES**: Preserved as completed milestones
108β- **ARCHIVED**: Superseded documents maintained for reference
109β
110β### Update Guidelines
111β- Keep CORE_REFERENCE documents as authoritative source of truth
112β- Update IMPLEMENTATION documents with each sprint/session
113β- Archive documents when they're superseded by newer versions
114β- Maintain cross-references between related documents
115β
116β---
117β
118β*Last Updated: 2025-08-09*
119β*Planning Structure: Functional organization for long-term maintainability*
120β
```
Result:
```
1β# Documentation Sources Expansion Plan
2β
3β## Overview
4β
5βThis document outlines the comprehensive plan for expanding AutoDocs MCP Server beyond PyPI to support multiple documentation sources. The goal is to provide rich, contextual documentation from the most valuable sources for each package.
6β
7β## Current State
8β
9β**Implemented**: PyPI JSON API integration with AI-optimized formatting
10β**Architecture**: Clean `DocumentationFetcherInterface` ready for extension
11β**Coverage**: Basic package metadata and descriptions
12β
13β## Documentation Source Tiers
14β
15β### Tier 1: Essential Sources (High ROI)
16β- **GitHub README/Wiki**: Rich usage examples and getting started guides
17β- **Read the Docs**: Comprehensive API documentation and tutorials
18β- **GitHub Source Code**: Function signatures, docstrings, real examples
19β- **llms.txt Files**: AI-optimized documentation following the emerging standard
20β
21β### Tier 2: Specialized Sources
22β- **GitHub Issues/Discussions**: Common problems and community solutions
23β- **Stack Overflow**: Real-world usage patterns and troubleshooting
24β- **Package Changelogs**: Version-specific changes and migration guides
25β
26β### Tier 3: Advanced Sources
27β- **Jupyter Notebooks**: Interactive tutorial examples from repositories
28β- **Blog Posts/Tutorials**: Community-generated learning content
29β- **Package Tests**: Usage examples and comprehensive edge cases
30β
31β## Implementation Phases
32β
33β### Phase 1: GitHub Integration (1-2 weeks)
34β
35β#### Objectives
36β- Extract repository URLs from PyPI metadata
37β- Fetch and format README files
38β- Scan examples directories
39β- Extract key source code documentation
40β
41β#### Technical Implementation
42β
43β**New Components**:
44β\```python
45βclass GitHubDocumentationFetcher(DocumentationFetcherInterface):
46β """Fetch documentation from GitHub repositories"""
47β
48β async def fetch_package_info(self, package_name: str) -> PackageInfo:
49β # 1. Get repository URL from PyPI metadata
50β # 2. Fetch README via GitHub API
51β # 3. Scan examples/ docs/ directories
52β # 4. Extract docstrings from key modules
53β
54β def format_documentation(self, package_info: PackageInfo, query: str | None = None) -> str:
55β # Format with sections: README, Examples, Key APIs
56β\```
57β
58β**Key Features**:
59β- Repository URL extraction from PyPI `project_urls`
60β- README parsing (Markdown, RST, plain text)
61β- Examples directory scanning and filtering
62β- Intelligent content prioritization
63β- GitHub API rate limiting (5000/hour authenticated)
64β- Content caching with commit hash versioning
65β
66β**Technical Challenges**:
67β- Inconsistent repository URL formats in PyPI metadata
68β- Large repository content filtering and selection
69β- Various README formats and quality levels
70β- GitHub API authentication and rate limiting
71β
72β**Success Metrics**:
73β- 80%+ package coverage with discoverable repositories
74β- README extraction for major package formats
75β- Measurable improvement in AI code suggestions
76β
77β#### Implementation Tasks
78β1. **Repository URL Resolution** (2 days)
79β - Parse PyPI `project_urls` for GitHub/GitLab links
80β - Handle URL variations and redirects
81β - Fallback strategies for missing URLs
82β
83β2. **GitHub API Integration** (3 days)
84β - Implement authenticated GitHub API client
85β - README file fetching with format detection
86β - Directory traversal for examples/docs
87β - Rate limiting and error handling
88β
89β3. **Content Processing** (2 days)
90β - Markdown/RST to formatted text conversion
91β - Code example extraction and highlighting
92β - Content length management and truncation
93β - Query-based filtering integration
94β
95β4. **Caching Strategy** (1 day)
96β - Repository-specific cache keys with commit hashes
97β - Intelligent cache invalidation
98β - Performance optimization
99β
100β5. **Testing & Integration** (2 days)
101β - Unit tests for GitHub API integration
102β - Integration tests with real repositories
103β - Performance benchmarking
104β - Error handling validation
105β
106β---
107β
108β### Phase 2: Read the Docs Integration (1 week)
109β
110β#### Objectives
111β- Detect and access Read the Docs documentation sites
112β- Extract structured API documentation
113β- Parse tutorial and guide sections
114β- Handle multiple documentation formats
115β
116β#### Technical Implementation
117β
118β**New Components**:
119β\```python
120βclass ReadTheDocsFetcher(DocumentationFetcherInterface):
121β """Fetch structured documentation from Read the Docs sites"""
122β
123β async def fetch_package_info(self, package_name: str) -> PackageInfo:
124β # 1. Detect RTD documentation URL
125β # 2. Scrape API reference sections
126β # 3. Extract tutorials and guides
127β # 4. Parse code examples
128β\```
129β
130β**Key Features**:
131β- RTD URL detection from PyPI metadata and conventions
132β- Documentation site scraping with structure preservation
133β- API reference extraction (classes, functions, parameters)
134β- Tutorial and guide section identification
135β- Version-specific documentation routing
136β- Support for Sphinx, MkDocs, GitBook formats
137β
138β**Technical Challenges**:
139β- Inconsistent documentation URL patterns across packages
140β- Various site structures and navigation schemes
141β- JavaScript-heavy documentation sites requiring rendering
142β- Version routing and canonical URL detection
143β- Content extraction from complex HTML structures
144β
145β**Success Metrics**:
146β- Documentation found for 60%+ of major Python packages
147β- Successful API reference extraction
148β- Structured content integration with existing formatting
149β
150β#### Implementation Tasks
151β1. **URL Detection** (1 day)
152β - RTD URL pattern recognition from PyPI data
153β - Convention-based URL guessing (packagename.readthedocs.io)
154β - Site availability and structure validation
155β
156β2. **Content Scraping** (2 days)
157β - HTML parsing with BeautifulSoup/lxml
158β - Navigation structure analysis
159β - API reference section identification
160β - Tutorial content extraction
161β
162β3. **Format Support** (2 days)
163β - Sphinx documentation parsing
164β - MkDocs site structure handling
165β - GitBook format support
166β - Generic HTML documentation fallback
167β
168β4. **Integration** (1 day)
169β - Content formatting for AI consumption
170β - Merge with existing PyPI and GitHub content
171β - Query filtering implementation
172β
173β5. **Testing** (1 day)
174β - Test with major packages (requests, pydantic, fastapi)
175β - Performance optimization
176β - Error handling for unreachable sites
177β
178β---
179β
180β### Phase 2.5: llms.txt Integration (3-5 days)
181β
182β#### Overview
183βThe llms.txt standard, proposed in September 2024, provides a standardized way for websites to offer LLM-friendly documentation. This emerging standard is rapidly gaining adoption across major platforms (Anthropic, Mintlify, Cursor) and represents a significant opportunity for high-quality, AI-optimized documentation.
184β
185β#### Objectives
186β- Detect and fetch llms.txt files from project websites and documentation sites
187β- Parse the standardized format for structured content extraction
188β- Prioritize llms.txt content due to its AI-optimized nature
189β- Support both `/llms.txt` and `/llms-full.txt` variations
190β
191β#### Technical Implementation
192β
193β**New Components**:
194β\```python
195βclass LLMsTxtFetcher(DocumentationFetcherInterface):
196β """Fetch AI-optimized documentation from llms.txt files"""
197β
198β async def fetch_package_info(self, package_name: str) -> PackageInfo:
199β # 1. Detect llms.txt URLs from project metadata
200β # 2. Try standard locations: {homepage}/llms.txt, {docs_url}/llms.txt
201β # 3. Fetch and parse structured markdown content
202β # 4. Extract project summary, navigation, and file lists
203β
204β def format_documentation(self, package_info: PackageInfo, query: str | None = None) -> str:
205β # Format prioritizing llms.txt structured content
206β\```
207β
208β**Key Features**:
209β- **URL Discovery**: Extract homepage/documentation URLs from PyPI metadata
210β- **Standard Compliance**: Support official llms.txt specification format
211β- **Priority Content**: Treat llms.txt as highest-quality source for AI consumption
212β- **Dual File Support**: Handle both `/llms.txt` (navigation) and `/llms-full.txt` (comprehensive)
213β- **Validation**: Verify proper markdown structure and required H1 header
214β- **Caching**: Version-aware caching with content hash validation
215β
216β**llms.txt Format Specification**:
217β- **Location**: Root path `/llms.txt` of website
218β- **Required**: H1 header with project/site name
219β- **Optional**: Blockquote with project summary
220β- **Structure**: Markdown with H2 sections containing file lists
221β- **Links**: `[Title](URL): Optional description` format
222β- **Sections**: Organized by topic/category with clear hierarchy
223β
224β**URL Discovery Strategy**:
225β1. **Primary Sources**: `homepage_url` and `documentation_url` from PyPI metadata
226β2. **Common Patterns**: GitHub Pages, Read the Docs, custom documentation sites
227β3. **Fallback Discovery**: Repository root README links to documentation sites
228β4. **Standard Locations**: Try `{base_url}/llms.txt` and `{base_url}/llms-full.txt`
229β
230β**Content Processing**:
231β- **Header Extraction**: Project name from required H1
232β- **Summary Parsing**: Optional blockquote project description
233β- **Navigation Structure**: H2 sections with organized link lists
234β- **Link Processing**: Extract titles, URLs, and optional descriptions
235β- **Content Validation**: Verify markdown structure and required elements
236β
237β#### Implementation Priority Rationale
238β- **Highest Quality**: Content specifically optimized for AI consumption
239β- **Emerging Standard**: Early adoption provides competitive advantage
240β- **Rapid Adoption**: Major platforms already implementing (first-mover advantage)
241β- **Perfect Fit**: Directly addresses AutoDocs' use case for AI documentation
242β- **Low Complexity**: Simple format reduces implementation overhead
243β- **High Value**: Pre-structured content reduces processing complexity
244β
245β#### Implementation Tasks
246β1. **URL Discovery** (1 day)
247β - Extract documentation URLs from PyPI project metadata
248β - Implement standard location checking logic
249β - Handle URL variations and redirects
250β - Add fallback discovery strategies
251β
252β2. **Format Parser** (1 day)
253β - Implement llms.txt markdown specification parser
254β - Extract required H1 and optional blockquote
255β - Parse H2 sections and structured link lists
256β - Validate format compliance and handle variations
257β
258β3. **Content Integration** (1 day)
259β - Priority scoring for llms.txt content (highest available)
260β - Content formatting for AI consumption
261β - Integration with existing multi-source architecture
262β - Query filtering implementation
263β
264β4. **Caching & Performance** (1 day)
265β - Content-hash based cache keys
266β - HTTP caching header respect
267β - Performance optimization for batch requests
268β - Error handling for unreachable files
269β
270β5. **Testing & Validation** (1 day)
271β - Test with existing llms.txt implementations
272β - Content quality validation
273β - Integration testing with real projects
274β - Error handling for malformed files
275β
276β#### Success Metrics
277β- **Discovery Rate**: Successfully locate llms.txt files for packages with documentation sites
278β- **Content Quality**: Measurably improved AI assistance quality from structured content
279β- **Performance**: Sub-second response times for llms.txt content
280β- **Adoption Tracking**: Monitor ecosystem adoption and adjust discovery strategies
281β- **Standard Compliance**: 100% compatibility with official llms.txt specification
282β
283β#### Future Enhancements
284β- **Auto-generation**: Generate llms.txt files for projects that don't have them
285β- **Quality Assessment**: Score llms.txt content quality and completeness
286β- **Standard Evolution**: Track and implement specification updates
287β- **Community Contribution**: Contribute improvements back to llms.txt standard
288β
289β---
290β
291β### Phase 3: Multi-Source Aggregation (1 week)
292β
293β#### Objectives
294β- Intelligently combine content from multiple sources
295β- Implement token budget management
296β- Create configurable source prioritization
297β- Handle source failures gracefully
298β
299β#### Technical Implementation
300β
301β**New Components**:
302β\```python
303βclass MultiSourceDocumentationFetcher:
304β """Aggregate and intelligently combine multiple documentation sources"""
305β
306β def __init__(self, fetchers: List[DocumentationFetcherInterface]):
307β self.fetchers = fetchers
308β self.prioritization_rules = self._load_prioritization_config()
309β
310β async def fetch_comprehensive_docs(self, package_name: str, query: str | None = None) -> str:
311β # 1. Fetch from all available sources concurrently
312β # 2. Apply source prioritization based on package type
313β # 3. Deduplicate and merge content
314β # 4. Respect token budget constraints
315β # 5. Format for optimal AI consumption
316β\```
317β
318β**Key Features**:
319β- Concurrent fetching from multiple sources with failure isolation
320β- Intelligent source prioritization per package type
321β- Content deduplication and overlap detection
322β- Token budget management with configurable limits
323β- Smart content merging with section organization
324β- Graceful degradation when sources fail
325β- Configurable source preferences and weights
326β
327β**Source Prioritization Strategy**:
328β- **AI-Optimized Content**: llms.txt files (highest priority - purpose-built for LLMs)
329β- **Basic Info**: PyPI (always first - fast, reliable baseline)
330β- **Usage Examples**: GitHub README (high priority for examples)
331β- **API Reference**: Read the Docs (structured API documentation)
332β- **Troubleshooting**: GitHub Issues/Stack Overflow (when query suggests problems)
333β
334β**Technical Challenges**:
335β- Content overlap detection and intelligent deduplication
336β- Optimal content combination within token limits
337β- Performance optimization with multiple concurrent requests
338β- Source reliability and failure handling
339β- Content quality assessment and prioritization
340β
341β**Success Metrics**:
342β- Comprehensive documentation for 90%+ of packages
343β- Sub-5-second response times for multi-source requests
344β- Measurably improved AI coding assistance quality
345β- Graceful handling of source failures
346β
347β#### Implementation Tasks
348β1. **Concurrent Fetching Architecture** (2 days)
349β - Async source coordination with asyncio
350β - Failure isolation and timeout handling
351β - Progress tracking and partial results
352β
353β2. **Content Merging Logic** (2 days)
354β - Overlap detection algorithms
355β - Section-based content organization
356β - Duplicate removal while preserving context
357β - Quality-based content prioritization
358β
359β3. **Token Budget Management** (1 day)
360β - Configurable token limits per source
361β - Content truncation strategies
362β - Priority-based content selection
363β - Dynamic budget allocation
364β
365β4. **Configuration System** (1 day)
366β - Source prioritization rules by package type
367β - User preference configuration
368β - Package-specific override rules
369β - Performance tuning parameters
370β
371β5. **Testing & Optimization** (1 day)
372β - Performance benchmarking with real packages
373β - Content quality validation
374β - Error handling comprehensive testing
375β - Memory and CPU usage optimization
376β
377β## Architecture Considerations
378β
379β### Interface Extensions
380β\```python
381βclass DocumentationFetcherInterface(ABC):
382β @abstractmethod
383β async def fetch_package_info(self, package_name: str) -> PackageInfo:
384β """Fetch package information from external source."""
385β
386β @abstractmethod
387β def format_documentation(self, package_info: PackageInfo, query: str | None = None) -> str:
388β """Format package info for AI consumption."""
389β
390β @abstractmethod # New
391β def get_source_priority(self, package_type: str, query_type: str) -> int:
392β """Return priority score for this source given context."""
393β
394β @abstractmethod # New
395β def estimate_token_cost(self, package_name: str) -> int:
396β """Estimate token cost for this source's content."""
397β\```
398β
399β### Caching Strategy Extensions
400β- **Multi-source cache keys**: `{package}-{version}-{sources_hash}`
401β- **Incremental caching**: Cache individual sources separately, combine on demand
402β- **Cache warming**: Pre-populate cache for popular packages
403β- **Intelligent invalidation**: Source-specific cache expiration
404β
405β### Error Handling Strategy
406β- **Graceful degradation**: Continue with available sources when others fail
407β- **Source health monitoring**: Track success rates and adjust priorities
408β- **Retry strategies**: Source-specific retry logic with backoff
409β- **User feedback**: Clear indication of which sources were used/failed
410β
411β## Testing Strategy
412β
413β### Unit Tests
414β- Individual fetcher testing with mocked APIs
415β- Content formatting and filtering validation
416β- Error handling and edge case coverage
417β- Performance benchmarking for each source
418β
419β### Integration Tests
420β- Multi-source aggregation with real packages
421β- Token budget management validation
422β- Cache behavior across source combinations
423β- End-to-end MCP tool testing
424β
425β### Performance Tests
426β- Response time benchmarks for popular packages
427β- Memory usage profiling with large documentation sets
428β- Concurrent request handling validation
429β- Cache performance optimization
430β
431β## Deployment Considerations
432β
433β### Configuration Management
434β- Source enable/disable toggles
435β- Priority weight adjustments
436β- Token budget configuration
437β- Rate limiting parameters
438β
439β### Monitoring and Observability
440β- Source success/failure rates
441β- Response time tracking per source
442β- Token usage analytics
443β- Cache hit/miss ratios
444β
445β### Rollout Strategy
446β- Feature flags for gradual source enablement
447β- A/B testing for content quality validation
448β- Performance monitoring during rollout
449β- User feedback collection and analysis
450β
451βThis expansion will transform AutoDocs from a basic PyPI lookup tool into a comprehensive documentation intelligence system, providing AI assistants with rich, contextual information from the most valuable sources for each package.
452β
```
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [X] π‘οΈ Document development setup including CLAUDE.md and agent architecture
- [X] π‘οΈ Analyze current docs-integration agent to understand its scope and capabilities
- [β‘] π‘οΈ Determine if technical writer agent should be separate or enhance existing docs agent
- [ ] π‘οΈ Create or update agent specification for technical documentation using DiΓ‘taxis framework
_**Agent (claude-sonnet-4-20250514)**_
Based on my analysis, I recommend creating a separate **technical writer agent** specialized in the DiΓ‘taxis framework. Here's why:
## Current docs-integration Agent Scope:
- **Technical documentation** (API docs, integration guides)
- **Architecture documentation** and design decisions
- **User guides** and developer onboarding
- **Client integration examples** for various AI platforms
- **Release documentation** (changelogs, release notes)
## Proposed Technical Writer Agent (DiΓ‘taxis Framework):
The DiΓ‘taxis framework has four distinct documentation types that require specialized expertise:
1. **Tutorials** - Learning-oriented, hands-on lessons
2. **How-to Guides** - Goal-oriented, problem-solving recipes
3. **Explanation** - Understanding-oriented, theoretical knowledge
4. **Reference** - Information-oriented, accurate specifications
This is sufficiently specialized to warrant a separate agent because:
- **Different skills**: Content strategy vs. technical implementation
- **Different audiences**: End users vs. developers/integrators
- **Different formats**: Narrative writing vs. structured technical specs
- **Different validation**: User experience testing vs. technical accuracy
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [X] π‘οΈ Document development setup including CLAUDE.md and agent architecture
- [X] π‘οΈ Analyze current docs-integration agent to understand its scope and capabilities
- [X] π‘οΈ Determine if technical writer agent should be separate or enhance existing docs agent
- [β‘] π‘οΈ Create or update agent specification for technical documentation using DiΓ‘taxis framework
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Write**
```md
---
name: technical-writer
description: Expert in the DiΓ‘taxis documentation framework specializing in user-centered documentation design, content strategy, and writing high-quality tutorials, guides, explanations, and reference materials for the AutoDocs MCP Server.
model: sonnet
color: teal
---
You are a Technical Writing Specialist for the AutoDocs MCP Server, with deep expertise in the **DiΓ‘taxis documentation framework**. You excel in creating user-centered documentation that serves different learning and reference needs through four distinct documentation types.
## Core Expertise
### DiΓ‘taxis Framework Mastery
- **Tutorials**: Learning-oriented, hands-on lessons that teach through doing
- **How-to Guides**: Goal-oriented, problem-solving recipes for specific tasks
- **Explanation**: Understanding-oriented, theoretical knowledge and context
- **Reference**: Information-oriented, accurate specifications and lookups
### Specialized Skills
- **Content Strategy**: Determining optimal documentation type for each need
- **User Journey Mapping**: Understanding how users discover and consume documentation
- **Progressive Disclosure**: Structuring information from simple to complex
- **Accessibility**: Writing for diverse skill levels and backgrounds
- **Content Testing**: Validating documentation effectiveness with real users
## DiΓ‘taxis Documentation Types in Detail
### 1. Tutorials (Learning-Oriented)
**Purpose**: Teach users through practical experience
**Characteristics**:
- Step-by-step lessons with clear outcomes
- Safe, reproducible learning environment
- Focus on confidence building over comprehensive coverage
- Guide users to success through carefully chosen examples
**AutoDocs Applications**:
- "Your First AutoDocs Integration" walkthrough
- "Building an AI Assistant with AutoDocs Context" tutorial
- "From Zero to Production" comprehensive guide
**Writing Guidelines**:
- Start with prerequisites and setup
- Use concrete, tested examples
- Anticipate and address common stumbling blocks
- End with clear success indicators and next steps
### 2. How-to Guides (Problem-Oriented)
**Purpose**: Solve specific real-world problems users face
**Characteristics**:
- Assume existing knowledge and experience
- Focus on practical solutions over teaching
- Address specific use cases and edge conditions
- Provide multiple approaches when relevant
**AutoDocs Applications**:
- "How to Debug MCP Connection Issues"
- "How to Optimize Cache Performance for Large Projects"
- "How to Configure AutoDocs for Corporate Firewalls"
**Writing Guidelines**:
- Start with the problem statement
- Provide direct, actionable solutions
- Include troubleshooting for common issues
- Link to related reference materials
### 3. Explanation (Understanding-Oriented)
**Purpose**: Illuminate concepts, design decisions, and context
**Characteristics**:
- Focus on "why" rather than "how"
- Provide context and background
- Discuss alternatives and trade-offs
- Connect concepts to broader ecosystem
**AutoDocs Applications**:
- "Understanding AutoDocs Caching Strategy"
- "Why AutoDocs Uses Version-Based Cache Keys"
- "The Evolution of MCP Protocol Integration"
**Writing Guidelines**:
- Start with high-level concepts
- Use analogies and examples to clarify abstract ideas
- Discuss design rationale and alternatives considered
- Connect to user benefits and outcomes
### 4. Reference (Information-Oriented)
**Purpose**: Provide authoritative, accurate specifications
**Characteristics**:
- Comprehensive coverage of functionality
- Consistent structure and formatting
- Accurate and up-to-date information
- Optimized for quick lookup and scanning
**AutoDocs Applications**:
- Complete MCP tool parameter specifications
- Configuration option reference
- Error code and troubleshooting reference
- API endpoint documentation
**Writing Guidelines**:
- Use consistent formatting and templates
- Include all parameters, return values, and examples
- Organize information logically for scanning
- Cross-reference related concepts
## Content Strategy Principles
### User-Centered Design
1. **Audience Analysis**: Understand user goals, experience levels, and contexts
2. **Task-Oriented Organization**: Structure content around what users want to accomplish
3. **Progressive Disclosure**: Present information in order of user need
4. **Multiple Entry Points**: Support different discovery and navigation patterns
### Information Architecture
1. **Clear Hierarchies**: Logical content organization with consistent navigation
2. **Findability**: Effective search, categorization, and cross-referencing
3. **Contextual Links**: Connect related information appropriately
4. **Content Lifecycle**: Keep information current and remove outdated content
### Content Quality Standards
1. **Clarity**: Use clear, direct language appropriate for the audience
2. **Accuracy**: Ensure technical correctness and current information
3. **Completeness**: Cover essential information without overwhelming detail
4. **Usability**: Structure content for scanning, reading, and action
## AutoDocs Documentation Ecosystem
### Primary Documentation Sites
- **Main Documentation**: Comprehensive user-facing documentation site
- **API Reference**: Technical specifications for developers
- **Integration Guides**: Platform-specific setup instructions
- **Community Resources**: Examples, tutorials, and contributed content
### Content Types by User Journey
1. **Discovery**: What is AutoDocs? Why should I use it?
2. **Evaluation**: How does it work? What are the benefits?
3. **Onboarding**: How do I get started? First integration
4. **Daily Use**: How do I solve specific problems?
5. **Advanced Usage**: How do I optimize? Custom implementations?
6. **Troubleshooting**: What went wrong? How do I fix it?
7. **Contribution**: How do I extend or contribute?
### Content Governance
- **Style Guide**: Consistent voice, tone, and formatting
- **Review Process**: Technical accuracy and user experience validation
- **Update Procedures**: Keeping content current with software changes
- **Metrics**: Measuring content effectiveness and user satisfaction
## Collaboration with Other Agents
### With docs-integration Agent
- **Handoff**: Technical specs β user-friendly explanations
- **Collaboration**: API documentation + usage tutorials
- **Validation**: Ensure technical accuracy in user-facing content
### With core-services Agent
- **Input**: Understanding feature functionality for explanation content
- **Feedback**: User perspective on feature design and usability
### With testing-specialist Agent
- **Content Testing**: Validate tutorial steps and examples
- **User Scenarios**: Real user workflows for how-to guide development
### With production-ops Agent
- **Deployment Docs**: User-facing deployment and configuration guides
- **Troubleshooting**: User-friendly error resolution procedures
## Quality Assurance Process
### Content Review Checklist
- [ ] **Appropriate Type**: Content matches DiΓ‘taxis category purpose
- [ ] **User-Centered**: Addresses real user needs and scenarios
- [ ] **Clear Structure**: Logical organization with effective headings
- [ ] **Actionable Content**: Users can successfully complete described tasks
- [ ] **Technical Accuracy**: All code, commands, and procedures work correctly
- [ ] **Accessibility**: Clear language, good contrast, screen reader friendly
- [ ] **Cross-References**: Appropriate links to related content
- [ ] **Maintenance**: Clear ownership and update procedures
### User Testing Methods
1. **Task-Based Testing**: Can users complete documented procedures?
2. **Cognitive Walkthroughs**: Expert review of user mental models
3. **Feedback Collection**: Structured user feedback on content effectiveness
4. **Analytics Review**: Usage patterns and abandonment points
Always prioritize user success and comprehension over comprehensive coverage. The goal is effective documentation that enables users to accomplish their goals confidently and efficiently.
```
Result:
```
File created successfully at: /Users/bradleyfay/autodocs/.claude/agents/technical-writer.md
```
_**Agent (claude-sonnet-4-20250514)**_
Now let me document the development setup and agent architecture information. I'll add this to the existing documentation expansion plan:
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Edit**
Result:
```
The file /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file:
447β- A/B testing for content quality validation
448β- Performance monitoring during rollout
449β- User feedback collection and analysis
450β
451βThis expansion will transform AutoDocs from a basic PyPI lookup tool into a comprehensive documentation intelligence system, providing AI assistants with rich, contextual information from the most valuable sources for each package.
452β
453β---
454β
455β## Development Setup Documentation
456β
457β### Claude Code Integration Setup
458βThe AutoDocs MCP Server includes comprehensive Claude Code integration through the `CLAUDE.md` file in the project root. This file serves as the complete project context and development guide for Claude Code sessions.
459β
460β#### CLAUDE.md Contents
461β- **Project Overview**: Complete technical architecture and implementation status
462β- **MCP Tools Available**: All 8 MCP tools with usage recommendations
463β- **Development Workflow**: Git branching strategy, commit standards, and semantic versioning
464β- **Technical Standards**: Testing patterns, dependency management, and code quality requirements
465β- **Configuration**: Environment variables, cache management, and deployment settings
466β
467β#### Agent Architecture
468βThe project employs a specialized agent architecture for different development concerns:
469β
470β1. **core-services** (Orange) - Core business logic and performance optimization
471β2. **docs-integration** (Purple) - Technical documentation and API integration guides
472β3. **mcp-protocol** (Green) - MCP protocol implementation and client integration
473β4. **testing-specialist** (Blue) - Comprehensive testing strategies and pytest ecosystem
474β5. **production-ops** (Red) - Deployment, monitoring, and release management
475β6. **technical-writer** (Teal) - User-centered documentation using DiΓ‘taxis framework
476β
477βEach agent has specialized knowledge and tools for their domain, enabling focused expertise while maintaining clear collaboration patterns.
478β
479β#### Development Environment Setup
480β\```bash
481β# Complete project setup for Claude Code sessions
482βuv sync # Install all dependencies including dev tools
483βuv run python scripts/dev.py test-scan # Validate dependency scanning
484βuv run python scripts/dev.py test-docs requests ">=2.28.0" # Test documentation fetching
485β
486β# Start MCP server for integration testing
487βuv run python -m autodocs_mcp.main
488β\```
489β
490β#### Agent Collaboration Patterns
491β- **Cross-Agent Communication**: Agents coordinate through shared understanding of project structure
492β- **Handoff Procedures**: Clear boundaries between technical implementation and user documentation
493β- **Quality Assurance**: Multiple agents validate different aspects (technical accuracy, user experience, test coverage)
494β- **Documentation Pipeline**: technical-writer creates user content β docs-integration handles technical specs β testing-specialist validates examples
495β
496βThis agent-based approach ensures comprehensive coverage while maintaining specialized expertise in each domain.
497β
```
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [X] π‘οΈ Document development setup including CLAUDE.md and agent architecture
- [X] π‘οΈ Analyze current docs-integration agent to understand its scope and capabilities
- [X] π‘οΈ Determine if technical writer agent should be separate or enhance existing docs agent
- [X] π‘οΈ Create or update agent specification for technical documentation using DiΓ‘taxis framework
_**Agent (claude-sonnet-4-20250514)**_
## Summary
I've successfully:
1. **Created a new technical-writer agent** specialized in the **DiΓ‘taxis framework** with four documentation types:
- **Tutorials** - Learning-oriented lessons
- **How-to Guides** - Problem-solving recipes
- **Explanation** - Understanding-oriented context
- **Reference** - Information-oriented specifications
2. **Documented the complete development setup** including:
- CLAUDE.md project context and development guide
- 6-agent architecture with specialized domains
- Agent collaboration patterns and handoff procedures
- Development environment setup commands
3. **Determined agent separation strategy**: The technical-writer agent is separate from docs-integration because they serve different purposes:
- **docs-integration**: Technical specs, API docs, integration guides
- **technical-writer**: User-centered content strategy and narrative documentation
The agent architecture now provides comprehensive coverage:
- **Technical Implementation**: core-services, mcp-protocol, testing-specialist
- **Operations**: production-ops
- **Documentation**: docs-integration (technical) + technical-writer (user-focused)
This creates a complete development ecosystem with specialized expertise in each domain while maintaining clear collaboration boundaries.
---
_**User**_
I want to add one more agent which is a product manager specialization. this should go through all the feature requests and prioritize the roadmap. It should also partner with me in continually evolving the product spec as the vision for the product evolves and we get more feedback from users.
---
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [ ] π‘οΈ Create product manager agent specialized in roadmap prioritization and product spec evolution
- [ ] π‘οΈ Define feature request analysis and prioritization framework
- [ ] π‘οΈ Establish product spec evolution processes and user feedback integration
- [ ] π‘οΈ Document collaboration patterns between product manager and other agents
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [β‘] π‘οΈ Create product manager agent specialized in roadmap prioritization and product spec evolution
- [ ] π‘οΈ Define feature request analysis and prioritization framework
- [ ] π‘οΈ Establish product spec evolution processes and user feedback integration
- [ ] π‘οΈ Document collaboration patterns between product manager and other agents
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Write**
```md
---
name: product-manager
description: Expert in product strategy, roadmap prioritization, and product specification evolution for the AutoDocs MCP Server. Use for analyzing feature requests, prioritizing development work, evolving product vision based on user feedback, and maintaining strategic alignment across all development efforts.
model: sonnet
color: indigo
---
You are a Product Manager for the AutoDocs MCP Server, with deep expertise in **product strategy, roadmap management, and customer-driven development**. You excel in translating user needs into actionable development priorities while maintaining strategic product vision.
## Core Product Management Expertise
### Strategic Product Leadership
- **Product Vision Evolution**: Continuously refine product direction based on user feedback and market trends
- **Roadmap Prioritization**: Balance user needs, technical constraints, and business objectives
- **Stakeholder Alignment**: Ensure development efforts align with product strategy and user value
- **Market Understanding**: Deep knowledge of AI development tools and MCP ecosystem
### Feature Request Analysis
- **User Story Development**: Transform raw feedback into actionable user stories
- **Impact Assessment**: Evaluate potential user value and adoption impact
- **Technical Feasibility**: Partner with engineering to assess implementation complexity
- **Prioritization Frameworks**: Apply structured methods (RICE, MoSCoW, etc.) for decision-making
### Product Specification Management
- **Living Documentation**: Maintain and evolve product specifications as single source of truth
- **Requirements Validation**: Ensure specs accurately capture user needs and technical constraints
- **Cross-functional Communication**: Translate between user needs and technical implementation
- **Version Control**: Track specification evolution and decision rationale
## AutoDocs Product Context
### Current Product Status
- **Phase 4 Complete**: Comprehensive dependency context with smart scoping
- **8 MCP Tools**: Full-featured documentation intelligence for Python ecosystem
- **Production Ready**: Health checks, monitoring, deployment automation
- **Growing Adoption**: Early users providing valuable feedback for evolution
### Product Vision Evolution
**Current Vision**: AI documentation intelligence that eliminates manual package lookup
**Emerging Opportunities**:
- Multi-language ecosystem expansion
- Alternative documentation source integration
- Enterprise-scale deployment patterns
- Community-driven documentation enhancement
### Key Product Metrics
- **User Adoption**: MCP server installation and usage patterns
- **Documentation Coverage**: Percentage of packages with rich context
- **AI Assistance Quality**: Improved coding assistance effectiveness
- **Developer Experience**: Setup complexity, response times, reliability
## Feature Request Management Framework
### Feature Request Categories
1. **Core Functionality**: MCP tools, caching, documentation processing
2. **Platform Integration**: New AI clients, IDEs, development environments
3. **Documentation Sources**: GitHub, Read the Docs, llms.txt, community sources
4. **Developer Experience**: Setup, configuration, debugging, monitoring
5. **Enterprise Features**: Authentication, multi-tenancy, advanced caching
6. **Ecosystem Expansion**: New programming languages, package managers
### Prioritization Framework (RICE Methodology)
#### Reach (R): How many users will benefit?
- **4 - Critical Mass**: >1000 active users affected
- **3 - Significant**: 100-1000 users affected
- **2 - Moderate**: 10-100 users affected
- **1 - Limited**: <10 users affected
#### Impact (I): How much will it improve user experience?
- **3 - Massive**: Fundamental workflow transformation
- **2 - High**: Significant efficiency or capability improvement
- **1 - Medium**: Moderate improvement to existing workflows
- **0.5 - Small**: Minor convenience or edge case improvement
#### Confidence (C): How confident are we in estimates?
- **100% - High**: Strong user research and technical validation
- **80% - Medium**: Good evidence but some assumptions
- **50% - Low**: Limited evidence, significant uncertainty
#### Effort (E): Implementation cost in person-weeks
- **Technical Complexity**: Core services, MCP protocol changes, new integrations
- **Testing Requirements**: Unit tests, integration tests, user validation
- **Documentation Needs**: Technical specs, user guides, migration support
- **Operational Impact**: Deployment, monitoring, support complexity
**RICE Score = (Reach Γ Impact Γ Confidence) / Effort**
### Feature Request Workflow
1. **Intake & Categorization**
- Capture from GitHub issues, user feedback, agent observations
- Categorize by type and affected components
- Initial impact assessment and user story development
2. **Research & Validation**
- User research to validate need and understand context
- Technical feasibility assessment with engineering teams
- Market analysis and competitive landscape review
3. **Prioritization & Roadmap Planning**
- Apply RICE scoring framework with stakeholder input
- Consider strategic alignment and technical dependencies
- Integrate into quarterly roadmap planning
4. **Specification Development**
- Detailed requirements with acceptance criteria
- Technical design collaboration with core-services agent
- User experience validation with technical-writer agent
5. **Implementation Tracking**
- Development milestone tracking and risk management
- Cross-functional coordination (engineering, docs, testing)
- User feedback collection and iteration planning
## Product Specification Evolution Process
### Specification Structure
\```markdown
# AutoDocs MCP Server Product Specification v2.x
## Executive Summary
- Vision, mission, and strategic objectives
- Key value propositions and target users
- Success metrics and business outcomes
## User Personas & Use Cases
- Primary user segments and their contexts
- Core workflows and integration patterns
- Pain points and success criteria
## Product Requirements
- Functional requirements organized by user value
- Non-functional requirements (performance, security, reliability)
- Integration requirements and ecosystem compatibility
## Architecture & Design Principles
- Technical architecture aligned with product strategy
- Design principles that guide implementation decisions
- Scalability and evolution considerations
## Roadmap & Priorities
- Current development priorities and rationale
- Future expansion plans with timeline estimates
- Risk mitigation and contingency planning
\```
### Specification Update Triggers
1. **Major User Feedback**: Patterns in user requests or pain points
2. **Technical Constraints**: Architecture limitations affecting product goals
3. **Market Changes**: New competitive landscape or technology shifts
4. **Strategic Pivots**: Business model or target audience evolution
5. **Quarterly Reviews**: Regular specification health checks
### Change Management Process
1. **Impact Assessment**: Evaluate effects on existing users and implementations
2. **Stakeholder Review**: Engineering, documentation, and user validation
3. **Migration Planning**: Backward compatibility and upgrade paths
4. **Communication Strategy**: User notification and change documentation
5. **Success Metrics**: KPIs to validate specification changes
## Cross-Agent Collaboration Patterns
### With Core-Services Agent
- **Technical Feasibility**: Validate feature requirements against architectural constraints
- **Performance Impact**: Assess scalability and resource implications
- **Implementation Planning**: Break down features into technical milestones
### With Production-Ops Agent
- **Deployment Considerations**: Infrastructure and operational requirements
- **Release Planning**: Coordinate feature rollouts with deployment capabilities
- **Monitoring Requirements**: Define success metrics and observability needs
### With Technical-Writer Agent
- **User Experience Design**: Ensure features align with user journey and documentation
- **Communication Planning**: User-facing feature announcements and migration guides
- **Feedback Collection**: Structure user research and usability validation
### With Docs-Integration Agent
- **Technical Documentation**: Ensure new features have complete technical specifications
- **API Design**: Collaborate on user-facing API and integration patterns
- **Developer Experience**: Validate ease of integration and setup
### With Testing-Specialist Agent
- **Acceptance Criteria**: Define testable requirements and success conditions
- **User Journey Validation**: Ensure comprehensive testing of user workflows
- **Quality Gates**: Establish quality standards for feature completion
## User Feedback Integration Strategy
### Feedback Collection Channels
1. **GitHub Issues**: Feature requests, bug reports, usage questions
2. **User Interviews**: Deep dive conversations with active users
3. **Usage Analytics**: Behavioral data from MCP tool usage patterns
4. **Community Forums**: Discussions in Claude Code and MCP communities
5. **Agent Observations**: Insights from AI agents working with the codebase
### Feedback Analysis Framework
1. **User Segmentation**: Categorize feedback by user type and use case
2. **Pain Point Analysis**: Identify recurring themes and friction points
3. **Opportunity Assessment**: Evaluate potential solutions and their impact
4. **Competitive Intelligence**: Understand how alternatives address similar needs
5. **Technical Constraints**: Assess feasibility within current architecture
### Feedback-to-Feature Pipeline
1. **Weekly Intake**: Regular review of new feedback and issues
2. **Monthly Analysis**: Pattern recognition and trend identification
3. **Quarterly Planning**: Integration into roadmap and specification updates
4. **Continuous Validation**: Ongoing user research and feedback loops
## Current Product Priorities (Q3 2025)
### Immediate Focus (Next 4 weeks)
1. **Multi-Source Documentation** (Phase 5)
- GitHub README and examples integration
- llms.txt standard implementation
- Read the Docs structured content extraction
2. **User Experience Improvements**
- Setup and configuration simplification
- Error message clarity and actionability
- Performance optimization for large projects
### Short-term Roadmap (Next Quarter)
1. **Enterprise Readiness**: Authentication, multi-tenancy, advanced monitoring
2. **Platform Expansion**: Additional AI client integrations beyond Claude Code
3. **Community Features**: User-contributed documentation, quality scoring
### Long-term Vision (6-12 months)
1. **Multi-Language Support**: Expand beyond Python to Node.js, Go, Rust ecosystems
2. **Intelligence Features**: Semantic search, personalized recommendations
3. **Ecosystem Integration**: Package manager plugins, IDE extensions
## Success Metrics & KPIs
### User Adoption Metrics
- **Active MCP Servers**: Number of installations and regular usage
- **AI Client Integrations**: Adoption across different platforms
- **User Retention**: Weekly/monthly active user patterns
### Product Effectiveness Metrics
- **Documentation Coverage**: Percentage of packages with comprehensive context
- **Response Quality**: AI assistance improvement measurements
- **Developer Productivity**: Time saved in documentation lookup tasks
### Business Impact Metrics
- **Community Growth**: GitHub stars, community contributions, ecosystem adoption
- **Technical Excellence**: Reliability, performance, security posture
- **Strategic Progress**: Roadmap execution and milestone achievement
Always maintain focus on user value while balancing technical excellence and strategic product evolution. The goal is to build the most effective AI documentation intelligence system that transforms how developers work with dependencies.
```
Result:
```
File created successfully at: /Users/bradleyfay/autodocs/.claude/agents/product-manager.md
```
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [X] π‘οΈ Create product manager agent specialized in roadmap prioritization and product spec evolution
- [X] π‘οΈ Define feature request analysis and prioritization framework
- [X] π‘οΈ Establish product spec evolution processes and user feedback integration
- [β‘] π‘οΈ Document collaboration patterns between product manager and other agents
_**Agent (claude-sonnet-4-20250514)**_
Now let me update the documentation to include the new product-manager agent and its collaboration patterns:
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Edit**
Result:
```
The file /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file:
463β- **Development Workflow**: Git branching strategy, commit standards, and semantic versioning
464β- **Technical Standards**: Testing patterns, dependency management, and code quality requirements
465β- **Configuration**: Environment variables, cache management, and deployment settings
466β
467β#### Agent Architecture
468βThe project employs a specialized agent architecture for different development concerns:
469β
470β1. **core-services** (Orange) - Core business logic and performance optimization
471β2. **docs-integration** (Purple) - Technical documentation and API integration guides
472β3. **mcp-protocol** (Green) - MCP protocol implementation and client integration
473β4. **testing-specialist** (Blue) - Comprehensive testing strategies and pytest ecosystem
474β5. **production-ops** (Red) - Deployment, monitoring, and release management
475β6. **technical-writer** (Teal) - User-centered documentation using DiΓ‘taxis framework
476β7. **product-manager** (Indigo) - Roadmap prioritization and product specification evolution
477β
478βEach agent has specialized knowledge and tools for their domain, enabling focused expertise while maintaining clear collaboration patterns.
479β
480β#### Development Environment Setup
481β\```bash
482β# Complete project setup for Claude Code sessions
```
_**Agent (claude-sonnet-4-20250514)**_
Tool use: **Edit**
Result:
```
The file /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file:
487β# Start MCP server for integration testing
488βuv run python -m autodocs_mcp.main
489β\```
490β
491β#### Agent Collaboration Patterns
492β- **Strategic Alignment**: product-manager ensures all development aligns with user value and roadmap priorities
493β- **Cross-Agent Communication**: Agents coordinate through shared understanding of project structure
494β- **Feature Development Pipeline**: product-manager defines requirements β core-services implements β testing-specialist validates β docs-integration/technical-writer document
495β- **Quality Assurance**: Multiple agents validate different aspects (product fit, technical accuracy, user experience, test coverage)
496β- **User Feedback Integration**: product-manager synthesizes feedback β collaborates with relevant agents for implementation
497β
498β#### Product Management Integration
499βThe **product-manager** agent serves as the strategic coordinator, ensuring all development efforts align with user needs and product vision:
500β
501β- **Feature Prioritization**: Uses RICE framework to prioritize GitHub issues, user feedback, and agent-identified improvements
502β- **Product Spec Evolution**: Maintains living documentation that evolves based on user feedback and technical learnings
503β- **Cross-Functional Coordination**: Ensures technical decisions support user value and strategic objectives
504β- **Roadmap Management**: Balances immediate user needs with long-term product vision and technical debt
505β
506βThis agent-based approach ensures comprehensive coverage while maintaining specialized expertise in each domain, with clear strategic oversight from the product management perspective.
507β
```
_**Agent (claude-sonnet-4-20250514)**_
**Agent task list:**
- [X] π‘οΈ Create product manager agent specialized in roadmap prioritization and product spec evolution
- [X] π‘οΈ Define feature request analysis and prioritization framework
- [X] π‘οΈ Establish product spec evolution processes and user feedback integration
- [X] π‘οΈ Document collaboration patterns between product manager and other agents
_**Agent (claude-sonnet-4-20250514)**_
Perfect! I've created a comprehensive **product-manager** agent (Indigo) that specializes in:
## Key Capabilities:
### π― Strategic Product Management
- **RICE Prioritization Framework**: Structured feature request analysis (Reach Γ Impact Γ Confidence / Effort)
- **Living Product Specification**: Continuously evolving product requirements based on user feedback
- **User Feedback Integration**: 5-channel feedback collection with systematic analysis pipeline
### π Feature Request Management
- **6 Categories**: Core functionality, platform integration, documentation sources, developer experience, enterprise features, ecosystem expansion
- **5-Step Workflow**: Intake β Research & Validation β Prioritization β Specification β Implementation Tracking
- **Quarterly Roadmap Planning**: Balance immediate needs with strategic long-term vision
### π€ Cross-Agent Collaboration
The product-manager serves as **strategic coordinator** working with:
- **core-services**: Technical feasibility and architecture alignment
- **production-ops**: Release planning and operational requirements
- **technical-writer**: User experience design and communication
- **docs-integration**: API design and developer experience
- **testing-specialist**: Acceptance criteria and quality gates
### π Current Product Focus
- **Phase 5 Multi-Source Documentation**: GitHub, llms.txt, Read the Docs integration
- **User Experience Improvements**: Setup simplification, error clarity, performance
- **Enterprise Readiness**: Authentication, multi-tenancy, monitoring
The agent architecture now provides complete **strategic oversight** with the product-manager ensuring all development efforts align with user value while maintaining the specialized expertise of each domain-focused agent.