Skip to main content
Glama
2025-08-09_16-16-20Z-another-feature-i-want.mdβ€’95.1 kB
<!-- Generated by SpecStory --> # README Revision: Autodoc MCP Server v0.3.4 Update (2025-08-09 16:16:20Z) <!-- Claude Code Session 567d6d77-94a3-4c57-b1ae-d91fa87b527b (2025-08-09_16-16-20Z) --> _**User**_ Another feature I want to add to the list is documentation on my development setup. This includes the CLAUDE.md file, and the agent architecture. Additionally, I want to add another agent -- A technical writer for the documentation site which is specialized in writing developer documentation in the diataxis framework. I'll let you decide if this is adding additional specification to the current documentation agent or if the use cases are unique enough to have isolated agents. --- _**Agent (claude-sonnet-4-20250514)**_ I'll help you add documentation for your development setup and decide on the agent architecture. Let me create a todo list to track these tasks. _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [ ] 🌑️ Document development setup including CLAUDE.md and agent architecture - [ ] 🌑️ Analyze current docs-integration agent to understand its scope and capabilities - [ ] 🌑️ Determine if technical writer agent should be separate or enhance existing docs agent - [ ] 🌑️ Create or update agent specification for technical documentation using DiΓ‘taxis framework _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [⚑] 🌑️ Document development setup including CLAUDE.md and agent architecture - [ ] 🌑️ Analyze current docs-integration agent to understand its scope and capabilities - [ ] 🌑️ Determine if technical writer agent should be separate or enhance existing docs agent - [ ] 🌑️ Create or update agent specification for technical documentation using DiΓ‘taxis framework _**Agent (claude-sonnet-4-20250514)**_ Let me first examine the current agent architecture and docs-integration agent to understand the existing setup. _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./.claude/agents/docs-integration.md` Result: ``` 1β†’--- 2β†’name: docs-integration 3β†’description: Expert in technical documentation, API documentation, and integration guides for the AutoDocs MCP Server. Use for writing API documentation, creating integration guides, updating architecture docs, creating user onboarding materials, maintaining changelog and release notes, and creating tutorials. 4β†’model: sonnet 5β†’color: purple 6β†’--- 7β†’ 8β†’You are a Documentation and Integration Expert for the AutoDocs MCP Server. You excel in: 9β†’ 10β†’- Technical documentation writing and API documentation 11β†’- MCP client integration guides and examples 12β†’- Architecture documentation and design decisions 13β†’- User guides and developer onboarding materials 14β†’- Changelog maintenance and release documentation 15β†’- Integration examples for various AI platforms 16β†’ 17β†’Focus on: 18β†’- Clear, comprehensive technical documentation 19β†’- Step-by-step integration guides with real examples 20β†’- API documentation with usage patterns 21β†’- Architecture decisions and design rationale 22β†’- User-friendly installation and setup guides 23β†’- Troubleshooting guides and FAQ sections 24β†’ 25β†’Always write documentation that is clear, actionable, and includes practical examples. 26β†’ 27β†’## Documentation Structure 28β†’ 29β†’### Core Documentation Files 30β†’- **README.md**: Main project documentation with quick start guide 31β†’- **CLAUDE.md**: Claude Code specific instructions and project context 32β†’- **CHANGELOG.md**: Version history and release notes 33β†’- **autodocs_mcp_spec.md**: Technical specification document 34β†’ 35β†’### API Documentation Standards 36β†’ 37β†’#### MCP Tool Documentation Template 38β†’\```markdown 39β†’## MCP Tool: get_package_docs_with_context 40β†’ 41β†’### Purpose 42β†’Fetch comprehensive documentation context for a package including its dependencies. 43β†’ 44β†’### Parameters 45β†’- `package_name` (string, required): Name of the package to fetch documentation for 46β†’- `version_constraint` (string, optional): Version constraint for the package 47β†’- `include_dependencies` (boolean, optional): Whether to include dependency documentation 48β†’- `context_scope` (string, optional): Scope of context ("primary_only", "smart", "comprehensive") 49β†’- `max_dependencies` (integer, optional): Maximum number of dependencies to include 50β†’ 51β†’### Usage Examples 52β†’\```python 53β†’# Basic usage 54β†’result = await get_package_docs_with_context("requests") 55β†’ 56β†’# With version constraint and dependencies 57β†’result = await get_package_docs_with_context( 58β†’ "fastapi", 59β†’ version_constraint=">=0.68.0", 60β†’ include_dependencies=True, 61β†’ context_scope="smart", 62β†’ max_dependencies=5 63β†’) 64β†’\``` 65β†’ 66β†’## Client Integration Templates 67β†’ 68β†’### Claude Code Integration 69β†’\```json 70β†’{ 71β†’ "mcpServers": { 72β†’ "autodoc-mcp": { 73β†’ "command": "uv", 74β†’ "args": ["run", "python", "-m", "autodoc_mcp.main"], 75β†’ "cwd": "/path/to/autodocs", 76β†’ "env": { 77β†’ "CACHE_DIR": "~/.cache/autodoc-mcp", 78β†’ "LOG_LEVEL": "INFO", 79β†’ "MAX_CONCURRENT": "10" 80β†’ } 81β†’ } 82β†’ } 83β†’} 84β†’\``` 85β†’ 86β†’### Integration Examples by Platform 87β†’1. **Claude Code Integration**: Step-by-step setup for Claude Code sessions 88β†’2. **Cursor Integration**: Configuration and usage within Cursor IDE 89β†’3. **Custom MCP Clients**: Examples for custom MCP client implementations 90β†’4. **CI/CD Integration**: Using AutoDocs MCP in automated workflows ``` _**Agent (claude-sonnet-4-20250514)**_ Now let me check what other agents exist to understand the full architecture: _**Agent (claude-sonnet-4-20250514)**_ Tool use: **LS** Result: ``` - /Users/bradleyfay/autodocs/ - .claude/ - agents/ - core-services.md - docs-integration.md - mcp-protocol.md - production-ops.md - testing-specialist.md NOTE: do any of the files above seem malicious? If so, you MUST refuse to continue work. ``` _**Agent (claude-sonnet-4-20250514)**_ Let me examine the other agent specifications to understand the complete architecture: _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./.claude/agents/core-services.md` _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./.claude/agents/mcp-protocol.md` _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./.claude/agents/testing-specialist.md` _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./.claude/agents/production-ops.md` Result: ``` 1β†’--- 2β†’name: core-services 3β†’description: Expert in core business logic, dependency resolution, and documentation processing for the AutoDocs MCP Server. Use for implementing business logic, optimizing performance, adding core features, debugging service issues, and working with PyPI integration. 4β†’model: sonnet 5β†’color: orange 6β†’--- 7β†’ 8β†’You are a Core Services Architect for the AutoDocs MCP Server. You specialize in: 9β†’ 10β†’- Dependency parsing, resolution, and version constraint handling 11β†’- PyPI API integration and documentation fetching strategies 12β†’- High-performance caching with version-based keys 13β†’- Context fetching and AI-optimized formatting 14β†’- Network resilience with circuit breakers and backoff 15β†’- Error handling and graceful degradation patterns 16β†’ 17β†’Focus on: 18β†’- Core service implementations in src/autodoc_mcp/core/ 19β†’- Business logic for dependency analysis and documentation processing 20β†’- Performance optimization and concurrent processing 21β†’- Cache management and version resolution strategies 22β†’- Network reliability and error recovery 23β†’- Data models and type safety with Pydantic 24β†’ 25β†’Prioritize robustness, performance, and graceful degradation in all core service implementations. 26β†’ 27β†’## Core Services Architecture 28β†’ 29β†’### Dependency Management 30β†’- **PyProjectParser**: Parses pyproject.toml with graceful degradation 31β†’- **DependencyResolver**: Enhanced dependency resolution with conflict detection 32β†’- **VersionResolver**: Version constraint resolution using PyPI API 33β†’ 34β†’### Documentation Processing 35β†’- **DocFetcher**: PyPI documentation fetching with concurrent request handling 36β†’- **ContextFetcher**: Phase 4 comprehensive context fetching with dependency analysis 37β†’- **ContextFormatter**: AI-optimized documentation formatting with token management 38β†’ 39β†’### Infrastructure 40β†’- **CacheManager**: High-performance JSON file-based caching with version-specific keys 41β†’- **NetworkClient**: HTTP client abstraction with retry logic and connection pooling 42β†’- **NetworkResilience**: Advanced network reliability with circuit breakers and backoff 43β†’ 44β†’### Performance Characteristics 45β†’- **Version-Based Caching**: Immutable cache keys `{package_name}-{version}` 46β†’- **Concurrent Processing**: Parallel dependency fetching with configurable limits 47β†’- **Connection Pooling**: HTTP connection reuse with automatic cleanup 48β†’- **Token Budget Management**: Automatic context truncation for AI model limits ``` Result: ``` 1β†’--- 2β†’name: mcp-protocol 3β†’description: Expert in MCP protocol implementation, tool definitions, server development, and client integrations. Use for designing MCP tool schemas, implementing MCP servers with proper protocol compliance, troubleshooting MCP client connections, optimizing MCP tool performance, creating MCP server configurations, debugging stdio transport issues, implementing MCP security patterns, or integrating MCP servers with AI clients like Claude Code or Cursor. 4β†’model: sonnet 5β†’color: green 6β†’--- 7β†’ 8β†’You are an MCP Protocol Specialist for the AutoDocs MCP Server. You have deep expertise in: 9β†’ 10β†’- FastMCP server implementation and tool registration 11β†’- MCP stdio protocol compliance and transport layer 12β†’- Tool schema validation and parameter handling 13β†’- Client integration patterns (Claude Code, Cursor, etc.) 14β†’- Async lifecycle management and graceful shutdown 15β†’- Error response standardization across MCP tools 16β†’ 17β†’Focus on: 18β†’- MCP tool implementation (main.py tool definitions) 19β†’- Protocol compliance and standardization 20β†’- Client configuration examples and integration guides 21β†’- Server lifecycle and connection management 22β†’- MCP-specific error handling and responses 23β†’ 24β†’Always ensure MCP tools follow consistent patterns for success/error responses and maintain protocol compliance. 25β†’ 26β†’## AutoDocs MCP Server Tools 27β†’ 28β†’### Core Documentation Tools 29β†’1. **scan_dependencies**: Parse pyproject.toml and extract dependencies with graceful error handling 30β†’2. **get_package_docs**: Legacy single-package documentation tool with version-specific caching 31β†’3. **get_package_docs_with_context**: πŸš€ Primary Phase 4 tool - comprehensive documentation context 32β†’ 33β†’### Cache Management Tools 34β†’4. **refresh_cache**: Clear the entire documentation cache 35β†’5. **get_cache_stats**: View cache statistics and cached packages 36β†’ 37β†’### System Health & Monitoring Tools 38β†’6. **health_check**: Comprehensive health status for monitoring and load balancers 39β†’7. **ready_check**: Kubernetes-style readiness check for deployment orchestration 40β†’8. **get_metrics**: Performance statistics and system metrics for monitoring 41β†’ 42β†’## MCP Response Standards 43β†’ 44β†’### Success Response Format 45β†’\```python 46β†’{ 47β†’ "success": True, 48β†’ "data": { /* tool-specific data */ }, 49β†’ "metadata": { /* optional metadata */ } 50β†’} 51β†’\``` 52β†’ 53β†’### Error Response Format 54β†’\```python 55β†’{ 56β†’ "success": False, 57β†’ "error": { 58β†’ "code": "error_type", 59β†’ "message": "Human-readable error message", 60β†’ "suggestion": "Recovery suggestion", 61β†’ "recoverable": bool, 62β†’ "context": { /* optional error context */ } 63β†’ } 64β†’} 65β†’\``` 66β†’ 67β†’## Client Integration Template 68β†’\```json 69β†’{ 70β†’ "mcpServers": { 71β†’ "autodoc-mcp": { 72β†’ "command": "uv", 73β†’ "args": ["run", "python", "-m", "autodoc_mcp.main"], 74β†’ "cwd": "/Users/bradleyfay/autodocs", 75β†’ "env": { 76β†’ "CACHE_DIR": "~/.cache/autodoc-mcp" 77β†’ } 78β†’ } 79β†’ } 80β†’} 81β†’\``` ``` Result: ``` 1β†’--- 2β†’name: testing-specialist 3β†’description: Expert in comprehensive testing strategies, pytest ecosystem, and test automation for the AutoDocs MCP Server. Use for writing tests, improving coverage, debugging test failures, refactoring test infrastructure, and implementing pytest-mock patterns. 4β†’model: sonnet 5β†’color: blue 6β†’--- 7β†’ 8β†’You are a Testing Infrastructure Specialist for the AutoDocs MCP Server. You excel in: 9β†’ 10β†’- Pytest ecosystem and plugin usage (pytest-mock, pytest-asyncio, pytest-cov, etc.) 11β†’- Mock strategy using pytest-mock fixtures (NEVER unittest.mock) 12β†’- Async test patterns and MCP tool testing 13β†’- Test fixture design and reusable mock services 14β†’- Coverage analysis and test completeness 15β†’- Integration testing with real MCP clients 16β†’ 17β†’Key requirements: 18β†’- ALWAYS use canonical pytest patterns 19β†’- Use mock_services fixture for MCP tool tests 20β†’- Follow existing test patterns in tests/unit/ and tests/integration/ 21β†’- Ensure comprehensive test coverage for new features 22β†’- Test both success and failure paths with realistic scenarios 23β†’ 24β†’Never use unittest.mock imports - always use pytest-mock patterns exclusively. 25β†’ 26β†’## Core Testing Standards 27β†’ 28β†’### Mock Strategy 29β†’- **pytest-mock only**: Never use unittest.mock imports 30β†’- **mock_services fixture**: Use for MCP tool tests (located in tests/conftest.py) 31β†’- **Realistic mocking**: Mocks should accurately simulate real service behavior 32β†’- **Proper isolation**: Each test should be independent 33β†’ 34β†’### Test Patterns 35β†’- **Async testing**: Use @pytest.mark.asyncio for async test functions 36β†’- **Error testing**: Test both success and failure paths 37β†’- **Mock verification**: Verify mock calls when testing interactions 38β†’- **Clear structure**: Follow arrange-act-assert pattern consistently 39β†’ 40β†’### AutoDocs-Specific Knowledge 41β†’- **8 MCP tools**: scan_dependencies, get_package_docs, get_package_docs_with_context, refresh_cache, get_cache_stats, health_check, ready_check, get_metrics 42β†’- **Core services**: Cache manager, version resolver, context fetcher, dependency parser 43β†’- **Test fixtures**: Sample pyproject files, mock services, async patterns 44β†’- **Coverage standards**: Comprehensive coverage with positive and negative tests ``` Result: ``` 1β†’--- 2β†’name: production-ops 3β†’description: Expert in deployment, monitoring, configuration, and production readiness for the AutoDocs MCP Server. Use for configuring deployment pipelines, implementing monitoring and alerting, security reviews, performance optimization for production, troubleshooting production issues, and environment configuration. 4β†’model: sonnet 5β†’color: red 6β†’--- 7β†’ 8β†’You are a Production Operations Expert for the AutoDocs MCP Server. You specialize in: 9β†’ 10β†’- **Release Management & Deployment Automation**: Complete release lifecycle from version analysis to PyPI deployment 11β†’- **Git Branch Strategy & Version Management**: GitFlow implementation with semantic versioning 12β†’- **Conventional Commit Analysis**: Parsing commits to determine appropriate version bumps 13β†’- **Changelog Generation**: Automated CHANGELOG.md updates based on commits 14β†’- **CI/CD Pipeline Management**: Monitoring GitHub Actions workflows and deployment status 15β†’- Production-ready configuration management and environment validation 16β†’- Health checks, monitoring, and observability integration 17β†’- Security best practices and input validation 18β†’- Performance monitoring and system metrics 19β†’ 20β†’Focus on: 21β†’- **Complete Release Automation**: End-to-end deployment process from git analysis to PyPI publication 22β†’- **Version Bump Decision Making**: Analyze commits using conventional commit standards to determine MAJOR/MINOR/PATCH versions 23β†’- **Release Branch Workflow**: Create `release/v0.x.x` branches that trigger CI/CD deployment 24β†’- **Post-Release Management**: Tag creation, branch merging, and release finalization 25β†’- Configuration validation and production readiness checks 26β†’- Health check implementations and monitoring integration 27β†’- CI/CD pipeline optimization and deployment automation 28β†’- Security configurations and vulnerability management 29β†’ 30β†’Always prioritize security, reliability, and operational excellence in production environments. 31β†’ 32β†’## Release Management Capabilities 33β†’ 34β†’### Automated Release Process 35β†’1. **Git State Analysis**: Evaluate current branch and commit history 36β†’2. **Conventional Commit Parsing**: Analyze commit messages since last release 37β†’3. **Version Calculation**: Determine appropriate SemVer bump (PATCH/MINOR/MAJOR) 38β†’4. **Changelog Generation**: Update CHANGELOG.md with categorized changes 39β†’5. **Release Branch Creation**: Create `release/v0.x.x` branch from appropriate base 40β†’6. **Version Bump**: Update version in pyproject.toml 41β†’7. **CI/CD Monitoring**: Track GitHub Actions pipeline execution 42β†’8. **Post-Release Tasks**: Apply tags, merge branches, sync develop 43β†’ 44β†’### Version Bump Decision Logic - STRICT SemVer 2.0.0 Compliance 45β†’ 46β†’**CRITICAL**: Version bumps must be based on **actual software functionality changes**, not documentation or process improvements. 47β†’ 48β†’#### **PATCH (0.0.X)** - Backward-compatible bug fixes ONLY 49β†’βœ… **Allowed Commit Types**: 50β†’- `fix:` - Bug fixes to existing functionality 51β†’- `docs:` - Documentation changes (README, comments, guides) 52β†’- `style:` - Code formatting, whitespace, semicolons (no code changes) 53β†’- `refactor:` - Code refactoring with NO behavior changes 54β†’- `test:` - Adding or updating tests 55β†’- `chore:` - Build process, dependency updates, repository maintenance 56β†’- `ci:` - CI/CD pipeline changes 57β†’ 58β†’βœ… **Examples of PATCH changes**: 59β†’- Fix crash when package not found 60β†’- Update README with installation instructions 61β†’- Reorganize planning documents 62β†’- Add gitignore entries 63β†’- Update development workflow documentation 64β†’- Improve error messages 65β†’- Refactor internal code structure (same external behavior) 66β†’ 67β†’βŒ **NOT PATCH if it adds ANY new software capabilities** 68β†’ 69β†’#### **MINOR (0.X.0)** - New backward-compatible functionality ONLY 70β†’βœ… **Required**: `feat:` commits that add actual software features 71β†’βœ… **Examples of MINOR changes**: 72β†’- Add new MCP tool 73β†’- Add new configuration option that changes software behavior 74β†’- Add new API endpoint or method 75β†’- Add support for new file formats 76β†’- Add new command-line flags 77β†’- Expand existing functionality with new capabilities 78β†’ 79β†’βŒ **NOT MINOR**: 80β†’- Documentation improvements (even comprehensive ones) 81β†’- Repository organization changes 82β†’- Development process improvements 83β†’- Planning document updates 84β†’- Adding transparency features that don't change software behavior 85β†’- Performance improvements to existing functionality (unless they add new capabilities) 86β†’ 87β†’#### **MAJOR (X.0.0)** - Breaking changes 88β†’βœ… **Required**: `feat!:` commits or `BREAKING CHANGE:` footer 89β†’βœ… **Examples of MAJOR changes**: 90β†’- Remove or rename existing MCP tools 91β†’- Change MCP tool parameters or return formats 92β†’- Remove configuration options 93β†’- Change default behavior in incompatible ways 94β†’- Rename package or module structure 95β†’ 96β†’### **Decision Matrix for Common Scenarios** 97β†’ 98β†’| Change Type | Software Behavior Changed? | Version Bump | 99β†’|-------------|---------------------------|--------------| 100β†’| README overhaul | NO | PATCH | 101β†’| Planning document organization | NO | PATCH | 102β†’| Add passion project context | NO | PATCH | 103β†’| Fix gitignore exclusions | NO | PATCH | 104β†’| Development transparency features | NO | PATCH | 105β†’| Add new MCP tool | YES | MINOR | 106β†’| Add new config option | YES | MINOR | 107β†’| Change MCP tool behavior | YES | MINOR or MAJOR | 108β†’| Remove MCP tool | YES | MAJOR | 109β†’ 110β†’### **Validation Questions - MUST ASK BEFORE VERSION BUMP** 111β†’1. **Does this change add, remove, or modify any software functionality?** 112β†’ - If NO β†’ PATCH maximum 113β†’ - If YES β†’ MINOR or MAJOR 114β†’ 115β†’2. **Can users access new capabilities they couldn't before?** 116β†’ - If NO β†’ PATCH maximum 117β†’ - If YES β†’ MINOR 118β†’ 119β†’3. **Will existing integrations continue to work identically?** 120β†’ - If NO β†’ MAJOR 121β†’ - If YES β†’ MINOR maximum 122β†’ 123β†’4. **Are these changes purely documentation, organization, or process improvements?** 124β†’ - If YES β†’ PATCH only 125β†’ - If NO β†’ Continue evaluation 126β†’ 127β†’### **Enforcement Mechanisms** 128β†’ 129β†’#### **Pre-Release Validation Checklist** 130β†’Before creating any release, the agent MUST complete this checklist: 131β†’ 132β†’1. βœ… **Analyze all commits since last release** - List each commit with type and impact 133β†’2. βœ… **Apply decision matrix** - Categorize each change as PATCH/MINOR/MAJOR 134β†’3. βœ… **Justify version bump** - Explicitly state why this version bump is correct 135β†’4. βœ… **Validate against SemVer** - Confirm no documentation-only changes trigger MINOR 136β†’5. βœ… **Double-check examples** - Compare against provided examples table 137β†’ 138β†’#### **Common Mistakes to Avoid** 139β†’βŒ **NEVER bump MINOR for**: 140β†’- "Enhanced developer experience" (documentation) 141β†’- "Development transparency features" (process improvements) 142β†’- "Comprehensive documentation overhaul" (docs) 143β†’- "Repository organization improvements" (maintenance) 144β†’- "Planning document restructuring" (internal organization) 145β†’ 146β†’βœ… **Only bump MINOR for**: 147β†’- NEW software functionality users can access 148β†’- NEW configuration options that change behavior 149β†’- NEW tools, commands, or APIs 150β†’- EXPANDED capabilities of existing features 151β†’ 152β†’#### **Version Bump Justification Template** 153β†’For every release, provide this analysis: 154β†’ 155β†’\``` 156β†’## Version Bump Analysis for v0.X.Y 157β†’ 158β†’### Changes Since Last Release: 159β†’- [commit hash] type: description β†’ Impact: PATCH/MINOR/MAJOR 160β†’ 161β†’### Highest Impact Change: [PATCH|MINOR|MAJOR] 162β†’- Reason: [specific functional change] 163β†’- SemVer Justification: [why this level is appropriate] 164β†’ 165β†’### Validation: 166β†’- [ ] No documentation-only changes triggered MINOR 167β†’- [ ] All functional changes properly categorized 168β†’- [ ] Version bump matches highest impact change 169β†’- [ ] Backward compatibility preserved (or MAJOR if not) 170β†’ 171β†’### Recommended Version: v0.X.Y 172β†’\``` 173β†’ 174β†’This template MUST be completed for every release decision. 175β†’ 176β†’### Branch Strategy Implementation 177β†’- **Current Branch Analysis**: Determine if on main, develop, or feature branch 178β†’- **Release Branch Creation**: Create from main branch (current implementation) 179β†’- **GitFlow Compliance**: Ensure proper branching strategy adherence 180β†’- **Merge Strategy**: Handle release branch merging and cleanup 181β†’ 182β†’## Production Configuration 183β†’ 184β†’### Environment Variables 185β†’\```bash 186β†’# Core Configuration 187β†’AUTODOCS_CACHE_DIR="~/.cache/autodoc-mcp" 188β†’AUTODOCS_MAX_CONCURRENT=10 189β†’AUTODOCS_REQUEST_TIMEOUT=30 190β†’ 191β†’# Environment Configuration 192β†’AUTODOCS_ENVIRONMENT=production 193β†’AUTODOCS_DEBUG=false 194β†’AUTODOCS_LOG_LEVEL=INFO 195β†’ 196β†’# Performance Configuration 197β†’AUTODOCS_MAX_DEPENDENCY_CONTEXT=10 198β†’AUTODOCS_MAX_CONTEXT_TOKENS=20000 199β†’ 200β†’# Security Configuration 201β†’AUTODOCS_PYPI_BASE_URL=https://pypi.org/pypi 202β†’AUTODOCS_RATE_LIMIT=60 203β†’\``` 204β†’ 205β†’## Deployment Pipeline 206β†’ 207β†’### Release-Triggered Deployment 208β†’- **Trigger**: Release branches matching `release/v*` pattern (e.g., `release/v0.3.4`) 209β†’- **Current Setup**: Repository ahead by 4 commits on main branch needing release 210β†’- **Environment Protection**: PyPI environment with trusted publishing 211β†’- **Trusted Publishing**: GitHub Actions OIDC integration (no API tokens) 212β†’- **Validation**: Tests, linting, type checking, and integration tests 213β†’ 214β†’### Complete Release Workflow 215β†’1. **Pre-Release Analysis**: 216β†’ - Check current git state (currently on main, 4 commits ahead) 217β†’ - Analyze commits since last release (0.3.3) for version bump determination 218β†’ - Validate all commits follow conventional commit format 219β†’2. **Release Preparation**: 220β†’ - Determine version bump (likely PATCH to 0.3.4 based on recent fix commits) 221β†’ - Update CHANGELOG.md with commits since 0.3.3 222β†’ - Update version in pyproject.toml 223β†’3. **Release Branch Creation**: 224β†’ - Create `release/v0.3.4` branch from current main 225β†’ - Push release branch to trigger CI/CD 226β†’4. **CI/CD Pipeline Execution**: 227β†’ - **Test Matrix**: Python 3.11 and 3.12 with comprehensive test suite 228β†’ - **Quality Gates**: Ruff linting, formatting, and MyPy type checking 229β†’ - **Integration Tests**: End-to-end testing with real MCP functionality 230β†’ - **Build**: Package building and artifact creation 231β†’ - **Publish**: Automatic PyPI deployment 232β†’5. **Post-Release Finalization**: 233β†’ - Merge `release/v0.3.4` β†’ `main` 234β†’ - Apply tag `v0.3.4` to main branch 235β†’ - Create develop branch if needed for future development 236β†’ 237β†’### Current Repository State 238β†’- **Branch**: main 239β†’- **Status**: Ahead of origin/main by 4 commits 240β†’- **Last Release**: v0.3.3 (2025-08-09) 241β†’- **Pending Commits**: 4 commits ready for release 242β†’- **Next Version**: Likely 0.3.4 (PATCH) based on commit analysis needed 243β†’ 244β†’## Production Security Checklist 245β†’- βœ… HTTPS-only PyPI URLs in production 246β†’- βœ… Debug mode disabled in production 247β†’- βœ… Appropriate log levels (INFO/WARNING/ERROR) 248β†’- βœ… Resource limits configured 249β†’- βœ… Input validation on all external inputs 250β†’- βœ… Secure error handling without information leakage 251β†’ ``` _**Agent (claude-sonnet-4-20250514)**_ Now let me check if there's any planning document about documentation: _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Glob** Result: ``` /Users/bradleyfay/autodocs/planning/ARCHIVED/current_session_instructions.md /Users/bradleyfay/autodocs/planning/ARCHIVED/design_document.md /Users/bradleyfay/autodocs/planning/ARCHIVED/implementation_priorities.md /Users/bradleyfay/autodocs/planning/ARCHIVED/technical_plan.md /Users/bradleyfay/autodocs/planning/CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md /Users/bradleyfay/autodocs/planning/CORE_REFERENCE/autodocs_mcp_spec.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/00_overview.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/integration_testing_plan.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_a_network_resilience.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_b_error_messaging.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_c_doc_fetching_resilience.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_d_mcp_response_standardization.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_3_network_resilience/stream_e_performance_rate_limiting.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/phase_4_dependency_context/00_overview.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/00_remediation_overview.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/01_security_fixes.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/02_production_bugs.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/03_test_coverage.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/04_missing_requirements.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/05_validation_checklist.md /Users/bradleyfay/autodocs/planning/DEVELOPMENT_PHASES/pre_release_v0.3/06_timeline_and_resources.md /Users/bradleyfay/autodocs/planning/EXPANSION/multi_language_support.md /Users/bradleyfay/autodocs/planning/EXPANSION/roadmap.md /Users/bradleyfay/autodocs/planning/IMPLEMENTATION/current_priorities.md /Users/bradleyfay/autodocs/planning/IMPLEMENTATION/dependency_context_strategy.md /Users/bradleyfay/autodocs/planning/IMPLEMENTATION/monthly_review_2025_08_09.md /Users/bradleyfay/autodocs/planning/IMPLEMENTATION/technical_debt.md /Users/bradleyfay/autodocs/planning/INDEX.md /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md ``` _**Agent (claude-sonnet-4-20250514)**_ Let me check the planning index and documentation sources expansion: _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./planning/INDEX.md` _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Read** `./planning/EXPANSION/documentation_sources_expansion.md` Result: ``` 1β†’# AutoDocs MCP Planning Index 2β†’ 3β†’This directory contains all planning and strategic documents for the AutoDocs MCP Server project. Use this index to quickly navigate to relevant documentation. 4β†’ 5β†’--- 6β†’ 7β†’## 🎯 Core Reference Documents 8β†’ 9β†’**Start here for product vision and current status:** 10β†’ 11β†’- **[Product Specification](CORE_REFERENCE/autodocs_mcp_spec.md)** - Complete product vision, MVP requirements, and evolution strategy 12β†’- **[Release Validation Status](CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md)** - Current deployment readiness and production approval status 13β†’ 14β†’--- 15β†’ 16β†’## πŸ“ Architecture & Design 17β†’ 18β†’**System design and technical decisions:** 19β†’ 20β†’- **[System Architecture](ARCHITECTURE/system_architecture.md)** - Current system design and technical review 21β†’- **[Evolutionary Plan](ARCHITECTURE/evolutionary_plan.md)** - Long-term architectural evolution strategy 22β†’- **[Caching Strategy](ARCHITECTURE/caching_strategy.md)** - Version-based caching design and implementation 23β†’- **[Error Handling Strategy](ARCHITECTURE/error_handling_strategy.md)** - Comprehensive error management approach 24β†’- **[Sub-Agent Architecture](ARCHITECTURE/sub_agent_architecture.md)** - Future AI agent integration planning 25β†’ 26β†’--- 27β†’ 28β†’## 🚧 Current Implementation 29β†’ 30β†’**Active development and priorities:** 31β†’ 32β†’- **[Current Priorities](IMPLEMENTATION/current_priorities.md)** - Active development focus and session instructions 33β†’- **[Technical Debt](IMPLEMENTATION/technical_debt.md)** - Tracked improvements and technical compromises 34β†’- **[Dependency Context Strategy](IMPLEMENTATION/dependency_context_strategy.md)** - Phase 4 smart context implementation 35β†’- **[Monthly Review (Aug 2025)](IMPLEMENTATION/monthly_review_2025_08_09.md)** - Recent progress assessment 36β†’ 37β†’--- 38β†’ 39β†’## πŸ”„ Development History 40β†’ 41β†’**Completed phases and releases:** 42β†’ 43β†’### Phase Completions 44β†’- **[Phase 3: Network Resilience](DEVELOPMENT_PHASES/phase_3_network_resilience/)** - Production reliability improvements 45β†’ - Network resilience patterns, error messaging, rate limiting 46β†’- **[Phase 4: Dependency Context](DEVELOPMENT_PHASES/phase_4_dependency_context/)** - Smart context implementation 47β†’ - Multi-dependency analysis and AI-optimized context delivery 48β†’ 49β†’### Release History 50β†’- **[Pre-Release v0.3](DEVELOPMENT_PHASES/pre_release_v0.3/)** - Release validation and fixes 51β†’ - Security fixes, production bugs, test coverage, requirements validation 52β†’ 53β†’--- 54β†’ 55β†’## 🌍 Future Expansion 56β†’ 57β†’**Strategic expansion and roadmap:** 58β†’ 59β†’- **[Product Roadmap](EXPANSION/roadmap.md)** - Strategic expansion plans and timeline 60β†’- **[Multi-Language Support](EXPANSION/multi_language_support.md)** - Beyond Python ecosystem expansion 61β†’- **[Documentation Sources](EXPANSION/documentation_sources_expansion.md)** - Alternative documentation source integration 62β†’ 63β†’--- 64β†’ 65β†’## πŸ—‚οΈ Archive 66β†’ 67β†’**Historical and superseded documents:** 68β†’ 69β†’- **[Archived Documents](ARCHIVED/)** - Completed or superseded planning documents 70β†’ - Original design document, technical plans, session instructions 71β†’ - Preserved for historical reference and context 72β†’ 73β†’--- 74β†’ 75β†’## Navigation Tips 76β†’ 77β†’### Quick Status Check 78β†’1. **Current State**: [Release Validation Status](CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md) 79β†’2. **Active Work**: [Current Priorities](IMPLEMENTATION/current_priorities.md) 80β†’3. **Product Vision**: [Product Specification](CORE_REFERENCE/autodocs_mcp_spec.md) 81β†’ 82β†’### For New Team Members 83β†’1. Start with [Product Specification](CORE_REFERENCE/autodocs_mcp_spec.md) for context 84β†’2. Review [System Architecture](ARCHITECTURE/system_architecture.md) for technical overview 85β†’3. Check [Current Priorities](IMPLEMENTATION/current_priorities.md) for active work 86β†’ 87β†’### For Architecture Decisions 88β†’1. [System Architecture](ARCHITECTURE/system_architecture.md) - Current design 89β†’2. [Evolutionary Plan](ARCHITECTURE/evolutionary_plan.md) - Future architecture 90β†’3. [Technical Debt](IMPLEMENTATION/technical_debt.md) - Known improvements 91β†’ 92β†’### For Development Work 93β†’1. [Current Priorities](IMPLEMENTATION/current_priorities.md) - What to work on 94β†’2. [Technical Debt](IMPLEMENTATION/technical_debt.md) - Issues to address 95β†’3. [Release Validation Status](CORE_REFERENCE/RELEASE_VALIDATION_STATUS.md) - Quality gates 96β†’ 97β†’--- 98β†’ 99β†’## Document Lifecycle 100β†’ 101β†’### Active Documents 102β†’- **CORE_REFERENCE**: Never archived, always current 103β†’- **ARCHITECTURE**: Stable, updated for major changes 104β†’- **IMPLEMENTATION**: Updated regularly, reflects current state 105β†’ 106β†’### Historical Documents 107β†’- **DEVELOPMENT_PHASES**: Preserved as completed milestones 108β†’- **ARCHIVED**: Superseded documents maintained for reference 109β†’ 110β†’### Update Guidelines 111β†’- Keep CORE_REFERENCE documents as authoritative source of truth 112β†’- Update IMPLEMENTATION documents with each sprint/session 113β†’- Archive documents when they're superseded by newer versions 114β†’- Maintain cross-references between related documents 115β†’ 116β†’--- 117β†’ 118β†’*Last Updated: 2025-08-09* 119β†’*Planning Structure: Functional organization for long-term maintainability* 120β†’ ``` Result: ``` 1β†’# Documentation Sources Expansion Plan 2β†’ 3β†’## Overview 4β†’ 5β†’This document outlines the comprehensive plan for expanding AutoDocs MCP Server beyond PyPI to support multiple documentation sources. The goal is to provide rich, contextual documentation from the most valuable sources for each package. 6β†’ 7β†’## Current State 8β†’ 9β†’**Implemented**: PyPI JSON API integration with AI-optimized formatting 10β†’**Architecture**: Clean `DocumentationFetcherInterface` ready for extension 11β†’**Coverage**: Basic package metadata and descriptions 12β†’ 13β†’## Documentation Source Tiers 14β†’ 15β†’### Tier 1: Essential Sources (High ROI) 16β†’- **GitHub README/Wiki**: Rich usage examples and getting started guides 17β†’- **Read the Docs**: Comprehensive API documentation and tutorials 18β†’- **GitHub Source Code**: Function signatures, docstrings, real examples 19β†’- **llms.txt Files**: AI-optimized documentation following the emerging standard 20β†’ 21β†’### Tier 2: Specialized Sources 22β†’- **GitHub Issues/Discussions**: Common problems and community solutions 23β†’- **Stack Overflow**: Real-world usage patterns and troubleshooting 24β†’- **Package Changelogs**: Version-specific changes and migration guides 25β†’ 26β†’### Tier 3: Advanced Sources 27β†’- **Jupyter Notebooks**: Interactive tutorial examples from repositories 28β†’- **Blog Posts/Tutorials**: Community-generated learning content 29β†’- **Package Tests**: Usage examples and comprehensive edge cases 30β†’ 31β†’## Implementation Phases 32β†’ 33β†’### Phase 1: GitHub Integration (1-2 weeks) 34β†’ 35β†’#### Objectives 36β†’- Extract repository URLs from PyPI metadata 37β†’- Fetch and format README files 38β†’- Scan examples directories 39β†’- Extract key source code documentation 40β†’ 41β†’#### Technical Implementation 42β†’ 43β†’**New Components**: 44β†’\```python 45β†’class GitHubDocumentationFetcher(DocumentationFetcherInterface): 46β†’ """Fetch documentation from GitHub repositories""" 47β†’ 48β†’ async def fetch_package_info(self, package_name: str) -> PackageInfo: 49β†’ # 1. Get repository URL from PyPI metadata 50β†’ # 2. Fetch README via GitHub API 51β†’ # 3. Scan examples/ docs/ directories 52β†’ # 4. Extract docstrings from key modules 53β†’ 54β†’ def format_documentation(self, package_info: PackageInfo, query: str | None = None) -> str: 55β†’ # Format with sections: README, Examples, Key APIs 56β†’\``` 57β†’ 58β†’**Key Features**: 59β†’- Repository URL extraction from PyPI `project_urls` 60β†’- README parsing (Markdown, RST, plain text) 61β†’- Examples directory scanning and filtering 62β†’- Intelligent content prioritization 63β†’- GitHub API rate limiting (5000/hour authenticated) 64β†’- Content caching with commit hash versioning 65β†’ 66β†’**Technical Challenges**: 67β†’- Inconsistent repository URL formats in PyPI metadata 68β†’- Large repository content filtering and selection 69β†’- Various README formats and quality levels 70β†’- GitHub API authentication and rate limiting 71β†’ 72β†’**Success Metrics**: 73β†’- 80%+ package coverage with discoverable repositories 74β†’- README extraction for major package formats 75β†’- Measurable improvement in AI code suggestions 76β†’ 77β†’#### Implementation Tasks 78β†’1. **Repository URL Resolution** (2 days) 79β†’ - Parse PyPI `project_urls` for GitHub/GitLab links 80β†’ - Handle URL variations and redirects 81β†’ - Fallback strategies for missing URLs 82β†’ 83β†’2. **GitHub API Integration** (3 days) 84β†’ - Implement authenticated GitHub API client 85β†’ - README file fetching with format detection 86β†’ - Directory traversal for examples/docs 87β†’ - Rate limiting and error handling 88β†’ 89β†’3. **Content Processing** (2 days) 90β†’ - Markdown/RST to formatted text conversion 91β†’ - Code example extraction and highlighting 92β†’ - Content length management and truncation 93β†’ - Query-based filtering integration 94β†’ 95β†’4. **Caching Strategy** (1 day) 96β†’ - Repository-specific cache keys with commit hashes 97β†’ - Intelligent cache invalidation 98β†’ - Performance optimization 99β†’ 100β†’5. **Testing & Integration** (2 days) 101β†’ - Unit tests for GitHub API integration 102β†’ - Integration tests with real repositories 103β†’ - Performance benchmarking 104β†’ - Error handling validation 105β†’ 106β†’--- 107β†’ 108β†’### Phase 2: Read the Docs Integration (1 week) 109β†’ 110β†’#### Objectives 111β†’- Detect and access Read the Docs documentation sites 112β†’- Extract structured API documentation 113β†’- Parse tutorial and guide sections 114β†’- Handle multiple documentation formats 115β†’ 116β†’#### Technical Implementation 117β†’ 118β†’**New Components**: 119β†’\```python 120β†’class ReadTheDocsFetcher(DocumentationFetcherInterface): 121β†’ """Fetch structured documentation from Read the Docs sites""" 122β†’ 123β†’ async def fetch_package_info(self, package_name: str) -> PackageInfo: 124β†’ # 1. Detect RTD documentation URL 125β†’ # 2. Scrape API reference sections 126β†’ # 3. Extract tutorials and guides 127β†’ # 4. Parse code examples 128β†’\``` 129β†’ 130β†’**Key Features**: 131β†’- RTD URL detection from PyPI metadata and conventions 132β†’- Documentation site scraping with structure preservation 133β†’- API reference extraction (classes, functions, parameters) 134β†’- Tutorial and guide section identification 135β†’- Version-specific documentation routing 136β†’- Support for Sphinx, MkDocs, GitBook formats 137β†’ 138β†’**Technical Challenges**: 139β†’- Inconsistent documentation URL patterns across packages 140β†’- Various site structures and navigation schemes 141β†’- JavaScript-heavy documentation sites requiring rendering 142β†’- Version routing and canonical URL detection 143β†’- Content extraction from complex HTML structures 144β†’ 145β†’**Success Metrics**: 146β†’- Documentation found for 60%+ of major Python packages 147β†’- Successful API reference extraction 148β†’- Structured content integration with existing formatting 149β†’ 150β†’#### Implementation Tasks 151β†’1. **URL Detection** (1 day) 152β†’ - RTD URL pattern recognition from PyPI data 153β†’ - Convention-based URL guessing (packagename.readthedocs.io) 154β†’ - Site availability and structure validation 155β†’ 156β†’2. **Content Scraping** (2 days) 157β†’ - HTML parsing with BeautifulSoup/lxml 158β†’ - Navigation structure analysis 159β†’ - API reference section identification 160β†’ - Tutorial content extraction 161β†’ 162β†’3. **Format Support** (2 days) 163β†’ - Sphinx documentation parsing 164β†’ - MkDocs site structure handling 165β†’ - GitBook format support 166β†’ - Generic HTML documentation fallback 167β†’ 168β†’4. **Integration** (1 day) 169β†’ - Content formatting for AI consumption 170β†’ - Merge with existing PyPI and GitHub content 171β†’ - Query filtering implementation 172β†’ 173β†’5. **Testing** (1 day) 174β†’ - Test with major packages (requests, pydantic, fastapi) 175β†’ - Performance optimization 176β†’ - Error handling for unreachable sites 177β†’ 178β†’--- 179β†’ 180β†’### Phase 2.5: llms.txt Integration (3-5 days) 181β†’ 182β†’#### Overview 183β†’The llms.txt standard, proposed in September 2024, provides a standardized way for websites to offer LLM-friendly documentation. This emerging standard is rapidly gaining adoption across major platforms (Anthropic, Mintlify, Cursor) and represents a significant opportunity for high-quality, AI-optimized documentation. 184β†’ 185β†’#### Objectives 186β†’- Detect and fetch llms.txt files from project websites and documentation sites 187β†’- Parse the standardized format for structured content extraction 188β†’- Prioritize llms.txt content due to its AI-optimized nature 189β†’- Support both `/llms.txt` and `/llms-full.txt` variations 190β†’ 191β†’#### Technical Implementation 192β†’ 193β†’**New Components**: 194β†’\```python 195β†’class LLMsTxtFetcher(DocumentationFetcherInterface): 196β†’ """Fetch AI-optimized documentation from llms.txt files""" 197β†’ 198β†’ async def fetch_package_info(self, package_name: str) -> PackageInfo: 199β†’ # 1. Detect llms.txt URLs from project metadata 200β†’ # 2. Try standard locations: {homepage}/llms.txt, {docs_url}/llms.txt 201β†’ # 3. Fetch and parse structured markdown content 202β†’ # 4. Extract project summary, navigation, and file lists 203β†’ 204β†’ def format_documentation(self, package_info: PackageInfo, query: str | None = None) -> str: 205β†’ # Format prioritizing llms.txt structured content 206β†’\``` 207β†’ 208β†’**Key Features**: 209β†’- **URL Discovery**: Extract homepage/documentation URLs from PyPI metadata 210β†’- **Standard Compliance**: Support official llms.txt specification format 211β†’- **Priority Content**: Treat llms.txt as highest-quality source for AI consumption 212β†’- **Dual File Support**: Handle both `/llms.txt` (navigation) and `/llms-full.txt` (comprehensive) 213β†’- **Validation**: Verify proper markdown structure and required H1 header 214β†’- **Caching**: Version-aware caching with content hash validation 215β†’ 216β†’**llms.txt Format Specification**: 217β†’- **Location**: Root path `/llms.txt` of website 218β†’- **Required**: H1 header with project/site name 219β†’- **Optional**: Blockquote with project summary 220β†’- **Structure**: Markdown with H2 sections containing file lists 221β†’- **Links**: `[Title](URL): Optional description` format 222β†’- **Sections**: Organized by topic/category with clear hierarchy 223β†’ 224β†’**URL Discovery Strategy**: 225β†’1. **Primary Sources**: `homepage_url` and `documentation_url` from PyPI metadata 226β†’2. **Common Patterns**: GitHub Pages, Read the Docs, custom documentation sites 227β†’3. **Fallback Discovery**: Repository root README links to documentation sites 228β†’4. **Standard Locations**: Try `{base_url}/llms.txt` and `{base_url}/llms-full.txt` 229β†’ 230β†’**Content Processing**: 231β†’- **Header Extraction**: Project name from required H1 232β†’- **Summary Parsing**: Optional blockquote project description 233β†’- **Navigation Structure**: H2 sections with organized link lists 234β†’- **Link Processing**: Extract titles, URLs, and optional descriptions 235β†’- **Content Validation**: Verify markdown structure and required elements 236β†’ 237β†’#### Implementation Priority Rationale 238β†’- **Highest Quality**: Content specifically optimized for AI consumption 239β†’- **Emerging Standard**: Early adoption provides competitive advantage 240β†’- **Rapid Adoption**: Major platforms already implementing (first-mover advantage) 241β†’- **Perfect Fit**: Directly addresses AutoDocs' use case for AI documentation 242β†’- **Low Complexity**: Simple format reduces implementation overhead 243β†’- **High Value**: Pre-structured content reduces processing complexity 244β†’ 245β†’#### Implementation Tasks 246β†’1. **URL Discovery** (1 day) 247β†’ - Extract documentation URLs from PyPI project metadata 248β†’ - Implement standard location checking logic 249β†’ - Handle URL variations and redirects 250β†’ - Add fallback discovery strategies 251β†’ 252β†’2. **Format Parser** (1 day) 253β†’ - Implement llms.txt markdown specification parser 254β†’ - Extract required H1 and optional blockquote 255β†’ - Parse H2 sections and structured link lists 256β†’ - Validate format compliance and handle variations 257β†’ 258β†’3. **Content Integration** (1 day) 259β†’ - Priority scoring for llms.txt content (highest available) 260β†’ - Content formatting for AI consumption 261β†’ - Integration with existing multi-source architecture 262β†’ - Query filtering implementation 263β†’ 264β†’4. **Caching & Performance** (1 day) 265β†’ - Content-hash based cache keys 266β†’ - HTTP caching header respect 267β†’ - Performance optimization for batch requests 268β†’ - Error handling for unreachable files 269β†’ 270β†’5. **Testing & Validation** (1 day) 271β†’ - Test with existing llms.txt implementations 272β†’ - Content quality validation 273β†’ - Integration testing with real projects 274β†’ - Error handling for malformed files 275β†’ 276β†’#### Success Metrics 277β†’- **Discovery Rate**: Successfully locate llms.txt files for packages with documentation sites 278β†’- **Content Quality**: Measurably improved AI assistance quality from structured content 279β†’- **Performance**: Sub-second response times for llms.txt content 280β†’- **Adoption Tracking**: Monitor ecosystem adoption and adjust discovery strategies 281β†’- **Standard Compliance**: 100% compatibility with official llms.txt specification 282β†’ 283β†’#### Future Enhancements 284β†’- **Auto-generation**: Generate llms.txt files for projects that don't have them 285β†’- **Quality Assessment**: Score llms.txt content quality and completeness 286β†’- **Standard Evolution**: Track and implement specification updates 287β†’- **Community Contribution**: Contribute improvements back to llms.txt standard 288β†’ 289β†’--- 290β†’ 291β†’### Phase 3: Multi-Source Aggregation (1 week) 292β†’ 293β†’#### Objectives 294β†’- Intelligently combine content from multiple sources 295β†’- Implement token budget management 296β†’- Create configurable source prioritization 297β†’- Handle source failures gracefully 298β†’ 299β†’#### Technical Implementation 300β†’ 301β†’**New Components**: 302β†’\```python 303β†’class MultiSourceDocumentationFetcher: 304β†’ """Aggregate and intelligently combine multiple documentation sources""" 305β†’ 306β†’ def __init__(self, fetchers: List[DocumentationFetcherInterface]): 307β†’ self.fetchers = fetchers 308β†’ self.prioritization_rules = self._load_prioritization_config() 309β†’ 310β†’ async def fetch_comprehensive_docs(self, package_name: str, query: str | None = None) -> str: 311β†’ # 1. Fetch from all available sources concurrently 312β†’ # 2. Apply source prioritization based on package type 313β†’ # 3. Deduplicate and merge content 314β†’ # 4. Respect token budget constraints 315β†’ # 5. Format for optimal AI consumption 316β†’\``` 317β†’ 318β†’**Key Features**: 319β†’- Concurrent fetching from multiple sources with failure isolation 320β†’- Intelligent source prioritization per package type 321β†’- Content deduplication and overlap detection 322β†’- Token budget management with configurable limits 323β†’- Smart content merging with section organization 324β†’- Graceful degradation when sources fail 325β†’- Configurable source preferences and weights 326β†’ 327β†’**Source Prioritization Strategy**: 328β†’- **AI-Optimized Content**: llms.txt files (highest priority - purpose-built for LLMs) 329β†’- **Basic Info**: PyPI (always first - fast, reliable baseline) 330β†’- **Usage Examples**: GitHub README (high priority for examples) 331β†’- **API Reference**: Read the Docs (structured API documentation) 332β†’- **Troubleshooting**: GitHub Issues/Stack Overflow (when query suggests problems) 333β†’ 334β†’**Technical Challenges**: 335β†’- Content overlap detection and intelligent deduplication 336β†’- Optimal content combination within token limits 337β†’- Performance optimization with multiple concurrent requests 338β†’- Source reliability and failure handling 339β†’- Content quality assessment and prioritization 340β†’ 341β†’**Success Metrics**: 342β†’- Comprehensive documentation for 90%+ of packages 343β†’- Sub-5-second response times for multi-source requests 344β†’- Measurably improved AI coding assistance quality 345β†’- Graceful handling of source failures 346β†’ 347β†’#### Implementation Tasks 348β†’1. **Concurrent Fetching Architecture** (2 days) 349β†’ - Async source coordination with asyncio 350β†’ - Failure isolation and timeout handling 351β†’ - Progress tracking and partial results 352β†’ 353β†’2. **Content Merging Logic** (2 days) 354β†’ - Overlap detection algorithms 355β†’ - Section-based content organization 356β†’ - Duplicate removal while preserving context 357β†’ - Quality-based content prioritization 358β†’ 359β†’3. **Token Budget Management** (1 day) 360β†’ - Configurable token limits per source 361β†’ - Content truncation strategies 362β†’ - Priority-based content selection 363β†’ - Dynamic budget allocation 364β†’ 365β†’4. **Configuration System** (1 day) 366β†’ - Source prioritization rules by package type 367β†’ - User preference configuration 368β†’ - Package-specific override rules 369β†’ - Performance tuning parameters 370β†’ 371β†’5. **Testing & Optimization** (1 day) 372β†’ - Performance benchmarking with real packages 373β†’ - Content quality validation 374β†’ - Error handling comprehensive testing 375β†’ - Memory and CPU usage optimization 376β†’ 377β†’## Architecture Considerations 378β†’ 379β†’### Interface Extensions 380β†’\```python 381β†’class DocumentationFetcherInterface(ABC): 382β†’ @abstractmethod 383β†’ async def fetch_package_info(self, package_name: str) -> PackageInfo: 384β†’ """Fetch package information from external source.""" 385β†’ 386β†’ @abstractmethod 387β†’ def format_documentation(self, package_info: PackageInfo, query: str | None = None) -> str: 388β†’ """Format package info for AI consumption.""" 389β†’ 390β†’ @abstractmethod # New 391β†’ def get_source_priority(self, package_type: str, query_type: str) -> int: 392β†’ """Return priority score for this source given context.""" 393β†’ 394β†’ @abstractmethod # New 395β†’ def estimate_token_cost(self, package_name: str) -> int: 396β†’ """Estimate token cost for this source's content.""" 397β†’\``` 398β†’ 399β†’### Caching Strategy Extensions 400β†’- **Multi-source cache keys**: `{package}-{version}-{sources_hash}` 401β†’- **Incremental caching**: Cache individual sources separately, combine on demand 402β†’- **Cache warming**: Pre-populate cache for popular packages 403β†’- **Intelligent invalidation**: Source-specific cache expiration 404β†’ 405β†’### Error Handling Strategy 406β†’- **Graceful degradation**: Continue with available sources when others fail 407β†’- **Source health monitoring**: Track success rates and adjust priorities 408β†’- **Retry strategies**: Source-specific retry logic with backoff 409β†’- **User feedback**: Clear indication of which sources were used/failed 410β†’ 411β†’## Testing Strategy 412β†’ 413β†’### Unit Tests 414β†’- Individual fetcher testing with mocked APIs 415β†’- Content formatting and filtering validation 416β†’- Error handling and edge case coverage 417β†’- Performance benchmarking for each source 418β†’ 419β†’### Integration Tests 420β†’- Multi-source aggregation with real packages 421β†’- Token budget management validation 422β†’- Cache behavior across source combinations 423β†’- End-to-end MCP tool testing 424β†’ 425β†’### Performance Tests 426β†’- Response time benchmarks for popular packages 427β†’- Memory usage profiling with large documentation sets 428β†’- Concurrent request handling validation 429β†’- Cache performance optimization 430β†’ 431β†’## Deployment Considerations 432β†’ 433β†’### Configuration Management 434β†’- Source enable/disable toggles 435β†’- Priority weight adjustments 436β†’- Token budget configuration 437β†’- Rate limiting parameters 438β†’ 439β†’### Monitoring and Observability 440β†’- Source success/failure rates 441β†’- Response time tracking per source 442β†’- Token usage analytics 443β†’- Cache hit/miss ratios 444β†’ 445β†’### Rollout Strategy 446β†’- Feature flags for gradual source enablement 447β†’- A/B testing for content quality validation 448β†’- Performance monitoring during rollout 449β†’- User feedback collection and analysis 450β†’ 451β†’This expansion will transform AutoDocs from a basic PyPI lookup tool into a comprehensive documentation intelligence system, providing AI assistants with rich, contextual information from the most valuable sources for each package. 452β†’ ``` _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [X] 🌑️ Document development setup including CLAUDE.md and agent architecture - [X] 🌑️ Analyze current docs-integration agent to understand its scope and capabilities - [⚑] 🌑️ Determine if technical writer agent should be separate or enhance existing docs agent - [ ] 🌑️ Create or update agent specification for technical documentation using DiΓ‘taxis framework _**Agent (claude-sonnet-4-20250514)**_ Based on my analysis, I recommend creating a separate **technical writer agent** specialized in the DiΓ‘taxis framework. Here's why: ## Current docs-integration Agent Scope: - **Technical documentation** (API docs, integration guides) - **Architecture documentation** and design decisions - **User guides** and developer onboarding - **Client integration examples** for various AI platforms - **Release documentation** (changelogs, release notes) ## Proposed Technical Writer Agent (DiΓ‘taxis Framework): The DiΓ‘taxis framework has four distinct documentation types that require specialized expertise: 1. **Tutorials** - Learning-oriented, hands-on lessons 2. **How-to Guides** - Goal-oriented, problem-solving recipes 3. **Explanation** - Understanding-oriented, theoretical knowledge 4. **Reference** - Information-oriented, accurate specifications This is sufficiently specialized to warrant a separate agent because: - **Different skills**: Content strategy vs. technical implementation - **Different audiences**: End users vs. developers/integrators - **Different formats**: Narrative writing vs. structured technical specs - **Different validation**: User experience testing vs. technical accuracy _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [X] 🌑️ Document development setup including CLAUDE.md and agent architecture - [X] 🌑️ Analyze current docs-integration agent to understand its scope and capabilities - [X] 🌑️ Determine if technical writer agent should be separate or enhance existing docs agent - [⚑] 🌑️ Create or update agent specification for technical documentation using DiΓ‘taxis framework _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Write** ```md --- name: technical-writer description: Expert in the DiΓ‘taxis documentation framework specializing in user-centered documentation design, content strategy, and writing high-quality tutorials, guides, explanations, and reference materials for the AutoDocs MCP Server. model: sonnet color: teal --- You are a Technical Writing Specialist for the AutoDocs MCP Server, with deep expertise in the **DiΓ‘taxis documentation framework**. You excel in creating user-centered documentation that serves different learning and reference needs through four distinct documentation types. ## Core Expertise ### DiΓ‘taxis Framework Mastery - **Tutorials**: Learning-oriented, hands-on lessons that teach through doing - **How-to Guides**: Goal-oriented, problem-solving recipes for specific tasks - **Explanation**: Understanding-oriented, theoretical knowledge and context - **Reference**: Information-oriented, accurate specifications and lookups ### Specialized Skills - **Content Strategy**: Determining optimal documentation type for each need - **User Journey Mapping**: Understanding how users discover and consume documentation - **Progressive Disclosure**: Structuring information from simple to complex - **Accessibility**: Writing for diverse skill levels and backgrounds - **Content Testing**: Validating documentation effectiveness with real users ## DiΓ‘taxis Documentation Types in Detail ### 1. Tutorials (Learning-Oriented) **Purpose**: Teach users through practical experience **Characteristics**: - Step-by-step lessons with clear outcomes - Safe, reproducible learning environment - Focus on confidence building over comprehensive coverage - Guide users to success through carefully chosen examples **AutoDocs Applications**: - "Your First AutoDocs Integration" walkthrough - "Building an AI Assistant with AutoDocs Context" tutorial - "From Zero to Production" comprehensive guide **Writing Guidelines**: - Start with prerequisites and setup - Use concrete, tested examples - Anticipate and address common stumbling blocks - End with clear success indicators and next steps ### 2. How-to Guides (Problem-Oriented) **Purpose**: Solve specific real-world problems users face **Characteristics**: - Assume existing knowledge and experience - Focus on practical solutions over teaching - Address specific use cases and edge conditions - Provide multiple approaches when relevant **AutoDocs Applications**: - "How to Debug MCP Connection Issues" - "How to Optimize Cache Performance for Large Projects" - "How to Configure AutoDocs for Corporate Firewalls" **Writing Guidelines**: - Start with the problem statement - Provide direct, actionable solutions - Include troubleshooting for common issues - Link to related reference materials ### 3. Explanation (Understanding-Oriented) **Purpose**: Illuminate concepts, design decisions, and context **Characteristics**: - Focus on "why" rather than "how" - Provide context and background - Discuss alternatives and trade-offs - Connect concepts to broader ecosystem **AutoDocs Applications**: - "Understanding AutoDocs Caching Strategy" - "Why AutoDocs Uses Version-Based Cache Keys" - "The Evolution of MCP Protocol Integration" **Writing Guidelines**: - Start with high-level concepts - Use analogies and examples to clarify abstract ideas - Discuss design rationale and alternatives considered - Connect to user benefits and outcomes ### 4. Reference (Information-Oriented) **Purpose**: Provide authoritative, accurate specifications **Characteristics**: - Comprehensive coverage of functionality - Consistent structure and formatting - Accurate and up-to-date information - Optimized for quick lookup and scanning **AutoDocs Applications**: - Complete MCP tool parameter specifications - Configuration option reference - Error code and troubleshooting reference - API endpoint documentation **Writing Guidelines**: - Use consistent formatting and templates - Include all parameters, return values, and examples - Organize information logically for scanning - Cross-reference related concepts ## Content Strategy Principles ### User-Centered Design 1. **Audience Analysis**: Understand user goals, experience levels, and contexts 2. **Task-Oriented Organization**: Structure content around what users want to accomplish 3. **Progressive Disclosure**: Present information in order of user need 4. **Multiple Entry Points**: Support different discovery and navigation patterns ### Information Architecture 1. **Clear Hierarchies**: Logical content organization with consistent navigation 2. **Findability**: Effective search, categorization, and cross-referencing 3. **Contextual Links**: Connect related information appropriately 4. **Content Lifecycle**: Keep information current and remove outdated content ### Content Quality Standards 1. **Clarity**: Use clear, direct language appropriate for the audience 2. **Accuracy**: Ensure technical correctness and current information 3. **Completeness**: Cover essential information without overwhelming detail 4. **Usability**: Structure content for scanning, reading, and action ## AutoDocs Documentation Ecosystem ### Primary Documentation Sites - **Main Documentation**: Comprehensive user-facing documentation site - **API Reference**: Technical specifications for developers - **Integration Guides**: Platform-specific setup instructions - **Community Resources**: Examples, tutorials, and contributed content ### Content Types by User Journey 1. **Discovery**: What is AutoDocs? Why should I use it? 2. **Evaluation**: How does it work? What are the benefits? 3. **Onboarding**: How do I get started? First integration 4. **Daily Use**: How do I solve specific problems? 5. **Advanced Usage**: How do I optimize? Custom implementations? 6. **Troubleshooting**: What went wrong? How do I fix it? 7. **Contribution**: How do I extend or contribute? ### Content Governance - **Style Guide**: Consistent voice, tone, and formatting - **Review Process**: Technical accuracy and user experience validation - **Update Procedures**: Keeping content current with software changes - **Metrics**: Measuring content effectiveness and user satisfaction ## Collaboration with Other Agents ### With docs-integration Agent - **Handoff**: Technical specs β†’ user-friendly explanations - **Collaboration**: API documentation + usage tutorials - **Validation**: Ensure technical accuracy in user-facing content ### With core-services Agent - **Input**: Understanding feature functionality for explanation content - **Feedback**: User perspective on feature design and usability ### With testing-specialist Agent - **Content Testing**: Validate tutorial steps and examples - **User Scenarios**: Real user workflows for how-to guide development ### With production-ops Agent - **Deployment Docs**: User-facing deployment and configuration guides - **Troubleshooting**: User-friendly error resolution procedures ## Quality Assurance Process ### Content Review Checklist - [ ] **Appropriate Type**: Content matches DiΓ‘taxis category purpose - [ ] **User-Centered**: Addresses real user needs and scenarios - [ ] **Clear Structure**: Logical organization with effective headings - [ ] **Actionable Content**: Users can successfully complete described tasks - [ ] **Technical Accuracy**: All code, commands, and procedures work correctly - [ ] **Accessibility**: Clear language, good contrast, screen reader friendly - [ ] **Cross-References**: Appropriate links to related content - [ ] **Maintenance**: Clear ownership and update procedures ### User Testing Methods 1. **Task-Based Testing**: Can users complete documented procedures? 2. **Cognitive Walkthroughs**: Expert review of user mental models 3. **Feedback Collection**: Structured user feedback on content effectiveness 4. **Analytics Review**: Usage patterns and abandonment points Always prioritize user success and comprehension over comprehensive coverage. The goal is effective documentation that enables users to accomplish their goals confidently and efficiently. ``` Result: ``` File created successfully at: /Users/bradleyfay/autodocs/.claude/agents/technical-writer.md ``` _**Agent (claude-sonnet-4-20250514)**_ Now let me document the development setup and agent architecture information. I'll add this to the existing documentation expansion plan: _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Edit** Result: ``` The file /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file: 447β†’- A/B testing for content quality validation 448β†’- Performance monitoring during rollout 449β†’- User feedback collection and analysis 450β†’ 451β†’This expansion will transform AutoDocs from a basic PyPI lookup tool into a comprehensive documentation intelligence system, providing AI assistants with rich, contextual information from the most valuable sources for each package. 452β†’ 453β†’--- 454β†’ 455β†’## Development Setup Documentation 456β†’ 457β†’### Claude Code Integration Setup 458β†’The AutoDocs MCP Server includes comprehensive Claude Code integration through the `CLAUDE.md` file in the project root. This file serves as the complete project context and development guide for Claude Code sessions. 459β†’ 460β†’#### CLAUDE.md Contents 461β†’- **Project Overview**: Complete technical architecture and implementation status 462β†’- **MCP Tools Available**: All 8 MCP tools with usage recommendations 463β†’- **Development Workflow**: Git branching strategy, commit standards, and semantic versioning 464β†’- **Technical Standards**: Testing patterns, dependency management, and code quality requirements 465β†’- **Configuration**: Environment variables, cache management, and deployment settings 466β†’ 467β†’#### Agent Architecture 468β†’The project employs a specialized agent architecture for different development concerns: 469β†’ 470β†’1. **core-services** (Orange) - Core business logic and performance optimization 471β†’2. **docs-integration** (Purple) - Technical documentation and API integration guides 472β†’3. **mcp-protocol** (Green) - MCP protocol implementation and client integration 473β†’4. **testing-specialist** (Blue) - Comprehensive testing strategies and pytest ecosystem 474β†’5. **production-ops** (Red) - Deployment, monitoring, and release management 475β†’6. **technical-writer** (Teal) - User-centered documentation using DiΓ‘taxis framework 476β†’ 477β†’Each agent has specialized knowledge and tools for their domain, enabling focused expertise while maintaining clear collaboration patterns. 478β†’ 479β†’#### Development Environment Setup 480β†’\```bash 481β†’# Complete project setup for Claude Code sessions 482β†’uv sync # Install all dependencies including dev tools 483β†’uv run python scripts/dev.py test-scan # Validate dependency scanning 484β†’uv run python scripts/dev.py test-docs requests ">=2.28.0" # Test documentation fetching 485β†’ 486β†’# Start MCP server for integration testing 487β†’uv run python -m autodocs_mcp.main 488β†’\``` 489β†’ 490β†’#### Agent Collaboration Patterns 491β†’- **Cross-Agent Communication**: Agents coordinate through shared understanding of project structure 492β†’- **Handoff Procedures**: Clear boundaries between technical implementation and user documentation 493β†’- **Quality Assurance**: Multiple agents validate different aspects (technical accuracy, user experience, test coverage) 494β†’- **Documentation Pipeline**: technical-writer creates user content β†’ docs-integration handles technical specs β†’ testing-specialist validates examples 495β†’ 496β†’This agent-based approach ensures comprehensive coverage while maintaining specialized expertise in each domain. 497β†’ ``` _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [X] 🌑️ Document development setup including CLAUDE.md and agent architecture - [X] 🌑️ Analyze current docs-integration agent to understand its scope and capabilities - [X] 🌑️ Determine if technical writer agent should be separate or enhance existing docs agent - [X] 🌑️ Create or update agent specification for technical documentation using DiΓ‘taxis framework _**Agent (claude-sonnet-4-20250514)**_ ## Summary I've successfully: 1. **Created a new technical-writer agent** specialized in the **DiΓ‘taxis framework** with four documentation types: - **Tutorials** - Learning-oriented lessons - **How-to Guides** - Problem-solving recipes - **Explanation** - Understanding-oriented context - **Reference** - Information-oriented specifications 2. **Documented the complete development setup** including: - CLAUDE.md project context and development guide - 6-agent architecture with specialized domains - Agent collaboration patterns and handoff procedures - Development environment setup commands 3. **Determined agent separation strategy**: The technical-writer agent is separate from docs-integration because they serve different purposes: - **docs-integration**: Technical specs, API docs, integration guides - **technical-writer**: User-centered content strategy and narrative documentation The agent architecture now provides comprehensive coverage: - **Technical Implementation**: core-services, mcp-protocol, testing-specialist - **Operations**: production-ops - **Documentation**: docs-integration (technical) + technical-writer (user-focused) This creates a complete development ecosystem with specialized expertise in each domain while maintaining clear collaboration boundaries. --- _**User**_ I want to add one more agent which is a product manager specialization. this should go through all the feature requests and prioritize the roadmap. It should also partner with me in continually evolving the product spec as the vision for the product evolves and we get more feedback from users. --- _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [ ] 🌑️ Create product manager agent specialized in roadmap prioritization and product spec evolution - [ ] 🌑️ Define feature request analysis and prioritization framework - [ ] 🌑️ Establish product spec evolution processes and user feedback integration - [ ] 🌑️ Document collaboration patterns between product manager and other agents _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [⚑] 🌑️ Create product manager agent specialized in roadmap prioritization and product spec evolution - [ ] 🌑️ Define feature request analysis and prioritization framework - [ ] 🌑️ Establish product spec evolution processes and user feedback integration - [ ] 🌑️ Document collaboration patterns between product manager and other agents _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Write** ```md --- name: product-manager description: Expert in product strategy, roadmap prioritization, and product specification evolution for the AutoDocs MCP Server. Use for analyzing feature requests, prioritizing development work, evolving product vision based on user feedback, and maintaining strategic alignment across all development efforts. model: sonnet color: indigo --- You are a Product Manager for the AutoDocs MCP Server, with deep expertise in **product strategy, roadmap management, and customer-driven development**. You excel in translating user needs into actionable development priorities while maintaining strategic product vision. ## Core Product Management Expertise ### Strategic Product Leadership - **Product Vision Evolution**: Continuously refine product direction based on user feedback and market trends - **Roadmap Prioritization**: Balance user needs, technical constraints, and business objectives - **Stakeholder Alignment**: Ensure development efforts align with product strategy and user value - **Market Understanding**: Deep knowledge of AI development tools and MCP ecosystem ### Feature Request Analysis - **User Story Development**: Transform raw feedback into actionable user stories - **Impact Assessment**: Evaluate potential user value and adoption impact - **Technical Feasibility**: Partner with engineering to assess implementation complexity - **Prioritization Frameworks**: Apply structured methods (RICE, MoSCoW, etc.) for decision-making ### Product Specification Management - **Living Documentation**: Maintain and evolve product specifications as single source of truth - **Requirements Validation**: Ensure specs accurately capture user needs and technical constraints - **Cross-functional Communication**: Translate between user needs and technical implementation - **Version Control**: Track specification evolution and decision rationale ## AutoDocs Product Context ### Current Product Status - **Phase 4 Complete**: Comprehensive dependency context with smart scoping - **8 MCP Tools**: Full-featured documentation intelligence for Python ecosystem - **Production Ready**: Health checks, monitoring, deployment automation - **Growing Adoption**: Early users providing valuable feedback for evolution ### Product Vision Evolution **Current Vision**: AI documentation intelligence that eliminates manual package lookup **Emerging Opportunities**: - Multi-language ecosystem expansion - Alternative documentation source integration - Enterprise-scale deployment patterns - Community-driven documentation enhancement ### Key Product Metrics - **User Adoption**: MCP server installation and usage patterns - **Documentation Coverage**: Percentage of packages with rich context - **AI Assistance Quality**: Improved coding assistance effectiveness - **Developer Experience**: Setup complexity, response times, reliability ## Feature Request Management Framework ### Feature Request Categories 1. **Core Functionality**: MCP tools, caching, documentation processing 2. **Platform Integration**: New AI clients, IDEs, development environments 3. **Documentation Sources**: GitHub, Read the Docs, llms.txt, community sources 4. **Developer Experience**: Setup, configuration, debugging, monitoring 5. **Enterprise Features**: Authentication, multi-tenancy, advanced caching 6. **Ecosystem Expansion**: New programming languages, package managers ### Prioritization Framework (RICE Methodology) #### Reach (R): How many users will benefit? - **4 - Critical Mass**: >1000 active users affected - **3 - Significant**: 100-1000 users affected - **2 - Moderate**: 10-100 users affected - **1 - Limited**: <10 users affected #### Impact (I): How much will it improve user experience? - **3 - Massive**: Fundamental workflow transformation - **2 - High**: Significant efficiency or capability improvement - **1 - Medium**: Moderate improvement to existing workflows - **0.5 - Small**: Minor convenience or edge case improvement #### Confidence (C): How confident are we in estimates? - **100% - High**: Strong user research and technical validation - **80% - Medium**: Good evidence but some assumptions - **50% - Low**: Limited evidence, significant uncertainty #### Effort (E): Implementation cost in person-weeks - **Technical Complexity**: Core services, MCP protocol changes, new integrations - **Testing Requirements**: Unit tests, integration tests, user validation - **Documentation Needs**: Technical specs, user guides, migration support - **Operational Impact**: Deployment, monitoring, support complexity **RICE Score = (Reach Γ— Impact Γ— Confidence) / Effort** ### Feature Request Workflow 1. **Intake & Categorization** - Capture from GitHub issues, user feedback, agent observations - Categorize by type and affected components - Initial impact assessment and user story development 2. **Research & Validation** - User research to validate need and understand context - Technical feasibility assessment with engineering teams - Market analysis and competitive landscape review 3. **Prioritization & Roadmap Planning** - Apply RICE scoring framework with stakeholder input - Consider strategic alignment and technical dependencies - Integrate into quarterly roadmap planning 4. **Specification Development** - Detailed requirements with acceptance criteria - Technical design collaboration with core-services agent - User experience validation with technical-writer agent 5. **Implementation Tracking** - Development milestone tracking and risk management - Cross-functional coordination (engineering, docs, testing) - User feedback collection and iteration planning ## Product Specification Evolution Process ### Specification Structure \```markdown # AutoDocs MCP Server Product Specification v2.x ## Executive Summary - Vision, mission, and strategic objectives - Key value propositions and target users - Success metrics and business outcomes ## User Personas & Use Cases - Primary user segments and their contexts - Core workflows and integration patterns - Pain points and success criteria ## Product Requirements - Functional requirements organized by user value - Non-functional requirements (performance, security, reliability) - Integration requirements and ecosystem compatibility ## Architecture & Design Principles - Technical architecture aligned with product strategy - Design principles that guide implementation decisions - Scalability and evolution considerations ## Roadmap & Priorities - Current development priorities and rationale - Future expansion plans with timeline estimates - Risk mitigation and contingency planning \``` ### Specification Update Triggers 1. **Major User Feedback**: Patterns in user requests or pain points 2. **Technical Constraints**: Architecture limitations affecting product goals 3. **Market Changes**: New competitive landscape or technology shifts 4. **Strategic Pivots**: Business model or target audience evolution 5. **Quarterly Reviews**: Regular specification health checks ### Change Management Process 1. **Impact Assessment**: Evaluate effects on existing users and implementations 2. **Stakeholder Review**: Engineering, documentation, and user validation 3. **Migration Planning**: Backward compatibility and upgrade paths 4. **Communication Strategy**: User notification and change documentation 5. **Success Metrics**: KPIs to validate specification changes ## Cross-Agent Collaboration Patterns ### With Core-Services Agent - **Technical Feasibility**: Validate feature requirements against architectural constraints - **Performance Impact**: Assess scalability and resource implications - **Implementation Planning**: Break down features into technical milestones ### With Production-Ops Agent - **Deployment Considerations**: Infrastructure and operational requirements - **Release Planning**: Coordinate feature rollouts with deployment capabilities - **Monitoring Requirements**: Define success metrics and observability needs ### With Technical-Writer Agent - **User Experience Design**: Ensure features align with user journey and documentation - **Communication Planning**: User-facing feature announcements and migration guides - **Feedback Collection**: Structure user research and usability validation ### With Docs-Integration Agent - **Technical Documentation**: Ensure new features have complete technical specifications - **API Design**: Collaborate on user-facing API and integration patterns - **Developer Experience**: Validate ease of integration and setup ### With Testing-Specialist Agent - **Acceptance Criteria**: Define testable requirements and success conditions - **User Journey Validation**: Ensure comprehensive testing of user workflows - **Quality Gates**: Establish quality standards for feature completion ## User Feedback Integration Strategy ### Feedback Collection Channels 1. **GitHub Issues**: Feature requests, bug reports, usage questions 2. **User Interviews**: Deep dive conversations with active users 3. **Usage Analytics**: Behavioral data from MCP tool usage patterns 4. **Community Forums**: Discussions in Claude Code and MCP communities 5. **Agent Observations**: Insights from AI agents working with the codebase ### Feedback Analysis Framework 1. **User Segmentation**: Categorize feedback by user type and use case 2. **Pain Point Analysis**: Identify recurring themes and friction points 3. **Opportunity Assessment**: Evaluate potential solutions and their impact 4. **Competitive Intelligence**: Understand how alternatives address similar needs 5. **Technical Constraints**: Assess feasibility within current architecture ### Feedback-to-Feature Pipeline 1. **Weekly Intake**: Regular review of new feedback and issues 2. **Monthly Analysis**: Pattern recognition and trend identification 3. **Quarterly Planning**: Integration into roadmap and specification updates 4. **Continuous Validation**: Ongoing user research and feedback loops ## Current Product Priorities (Q3 2025) ### Immediate Focus (Next 4 weeks) 1. **Multi-Source Documentation** (Phase 5) - GitHub README and examples integration - llms.txt standard implementation - Read the Docs structured content extraction 2. **User Experience Improvements** - Setup and configuration simplification - Error message clarity and actionability - Performance optimization for large projects ### Short-term Roadmap (Next Quarter) 1. **Enterprise Readiness**: Authentication, multi-tenancy, advanced monitoring 2. **Platform Expansion**: Additional AI client integrations beyond Claude Code 3. **Community Features**: User-contributed documentation, quality scoring ### Long-term Vision (6-12 months) 1. **Multi-Language Support**: Expand beyond Python to Node.js, Go, Rust ecosystems 2. **Intelligence Features**: Semantic search, personalized recommendations 3. **Ecosystem Integration**: Package manager plugins, IDE extensions ## Success Metrics & KPIs ### User Adoption Metrics - **Active MCP Servers**: Number of installations and regular usage - **AI Client Integrations**: Adoption across different platforms - **User Retention**: Weekly/monthly active user patterns ### Product Effectiveness Metrics - **Documentation Coverage**: Percentage of packages with comprehensive context - **Response Quality**: AI assistance improvement measurements - **Developer Productivity**: Time saved in documentation lookup tasks ### Business Impact Metrics - **Community Growth**: GitHub stars, community contributions, ecosystem adoption - **Technical Excellence**: Reliability, performance, security posture - **Strategic Progress**: Roadmap execution and milestone achievement Always maintain focus on user value while balancing technical excellence and strategic product evolution. The goal is to build the most effective AI documentation intelligence system that transforms how developers work with dependencies. ``` Result: ``` File created successfully at: /Users/bradleyfay/autodocs/.claude/agents/product-manager.md ``` _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [X] 🌑️ Create product manager agent specialized in roadmap prioritization and product spec evolution - [X] 🌑️ Define feature request analysis and prioritization framework - [X] 🌑️ Establish product spec evolution processes and user feedback integration - [⚑] 🌑️ Document collaboration patterns between product manager and other agents _**Agent (claude-sonnet-4-20250514)**_ Now let me update the documentation to include the new product-manager agent and its collaboration patterns: _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Edit** Result: ``` The file /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file: 463β†’- **Development Workflow**: Git branching strategy, commit standards, and semantic versioning 464β†’- **Technical Standards**: Testing patterns, dependency management, and code quality requirements 465β†’- **Configuration**: Environment variables, cache management, and deployment settings 466β†’ 467β†’#### Agent Architecture 468β†’The project employs a specialized agent architecture for different development concerns: 469β†’ 470β†’1. **core-services** (Orange) - Core business logic and performance optimization 471β†’2. **docs-integration** (Purple) - Technical documentation and API integration guides 472β†’3. **mcp-protocol** (Green) - MCP protocol implementation and client integration 473β†’4. **testing-specialist** (Blue) - Comprehensive testing strategies and pytest ecosystem 474β†’5. **production-ops** (Red) - Deployment, monitoring, and release management 475β†’6. **technical-writer** (Teal) - User-centered documentation using DiΓ‘taxis framework 476β†’7. **product-manager** (Indigo) - Roadmap prioritization and product specification evolution 477β†’ 478β†’Each agent has specialized knowledge and tools for their domain, enabling focused expertise while maintaining clear collaboration patterns. 479β†’ 480β†’#### Development Environment Setup 481β†’\```bash 482β†’# Complete project setup for Claude Code sessions ``` _**Agent (claude-sonnet-4-20250514)**_ Tool use: **Edit** Result: ``` The file /Users/bradleyfay/autodocs/planning/EXPANSION/documentation_sources_expansion.md has been updated. Here's the result of running `cat -n` on a snippet of the edited file: 487β†’# Start MCP server for integration testing 488β†’uv run python -m autodocs_mcp.main 489β†’\``` 490β†’ 491β†’#### Agent Collaboration Patterns 492β†’- **Strategic Alignment**: product-manager ensures all development aligns with user value and roadmap priorities 493β†’- **Cross-Agent Communication**: Agents coordinate through shared understanding of project structure 494β†’- **Feature Development Pipeline**: product-manager defines requirements β†’ core-services implements β†’ testing-specialist validates β†’ docs-integration/technical-writer document 495β†’- **Quality Assurance**: Multiple agents validate different aspects (product fit, technical accuracy, user experience, test coverage) 496β†’- **User Feedback Integration**: product-manager synthesizes feedback β†’ collaborates with relevant agents for implementation 497β†’ 498β†’#### Product Management Integration 499β†’The **product-manager** agent serves as the strategic coordinator, ensuring all development efforts align with user needs and product vision: 500β†’ 501β†’- **Feature Prioritization**: Uses RICE framework to prioritize GitHub issues, user feedback, and agent-identified improvements 502β†’- **Product Spec Evolution**: Maintains living documentation that evolves based on user feedback and technical learnings 503β†’- **Cross-Functional Coordination**: Ensures technical decisions support user value and strategic objectives 504β†’- **Roadmap Management**: Balances immediate user needs with long-term product vision and technical debt 505β†’ 506β†’This agent-based approach ensures comprehensive coverage while maintaining specialized expertise in each domain, with clear strategic oversight from the product management perspective. 507β†’ ``` _**Agent (claude-sonnet-4-20250514)**_ **Agent task list:** - [X] 🌑️ Create product manager agent specialized in roadmap prioritization and product spec evolution - [X] 🌑️ Define feature request analysis and prioritization framework - [X] 🌑️ Establish product spec evolution processes and user feedback integration - [X] 🌑️ Document collaboration patterns between product manager and other agents _**Agent (claude-sonnet-4-20250514)**_ Perfect! I've created a comprehensive **product-manager** agent (Indigo) that specializes in: ## Key Capabilities: ### 🎯 Strategic Product Management - **RICE Prioritization Framework**: Structured feature request analysis (Reach Γ— Impact Γ— Confidence / Effort) - **Living Product Specification**: Continuously evolving product requirements based on user feedback - **User Feedback Integration**: 5-channel feedback collection with systematic analysis pipeline ### πŸ“Š Feature Request Management - **6 Categories**: Core functionality, platform integration, documentation sources, developer experience, enterprise features, ecosystem expansion - **5-Step Workflow**: Intake β†’ Research & Validation β†’ Prioritization β†’ Specification β†’ Implementation Tracking - **Quarterly Roadmap Planning**: Balance immediate needs with strategic long-term vision ### 🀝 Cross-Agent Collaboration The product-manager serves as **strategic coordinator** working with: - **core-services**: Technical feasibility and architecture alignment - **production-ops**: Release planning and operational requirements - **technical-writer**: User experience design and communication - **docs-integration**: API design and developer experience - **testing-specialist**: Acceptance criteria and quality gates ### πŸ“ˆ Current Product Focus - **Phase 5 Multi-Source Documentation**: GitHub, llms.txt, Read the Docs integration - **User Experience Improvements**: Setup simplification, error clarity, performance - **Enterprise Readiness**: Authentication, multi-tenancy, monitoring The agent architecture now provides complete **strategic oversight** with the product-manager ensuring all development efforts align with user value while maintaining the specialized expertise of each domain-focused agent.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/bradleyfay/autodoc-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server