Skip to main content
Glama

box_ai_extract_structured_enhanced_using_template_tool

Extract structured data from files using AI to populate a single metadata template, combining information from multiple documents into one complete record.

Instructions

Extract structured data from one or more files and return a SINGLE metadata instance (Enhanced version).

This enhanced tool analyzes the provided file(s) and extracts information to populate a single metadata instance based on the specified template. When multiple files are provided, Box AI combines information from ALL files to create ONE complete metadata record.

Enhanced features:

  • Uses advanced AI models (e.g., Google Gemini) for improved accuracy

  • Better handling of complex document layouts and image quality

  • More robust extraction for handwritten or low-quality scans

Use cases:

  • Single file: Extract metadata from one receipt, invoice, or document

  • Multiple files: Combine data from multiple sources into one metadata instance (e.g., extract project info from a proposal PDF, budget spreadsheet, and timeline image)

NOT for batch processing: If you need to extract metadata from multiple files as separate instances, call this tool once per file in a loop.

Args: ctx (Context): The context object containing the request and lifespan context. file_ids (List[str]): The IDs of the files to read. template_key (str): The key of the metadata template to use for the extraction. Example: "insurance_policy_template". Returns: dict: The extracted structured data in a json string format.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
file_idsYes
template_keyYes

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/box-community/mcp-server-box'

If you have feedback or need assistance with the MCP directory API, please join our Discord server